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Abstract

Pathological lymph node delineation is crucial in cancer diagnosis, progression assess-
ment, and treatment planning. The MICCAI 2023 Lymph Node Quantification Chal-
lenge published the first public dataset for pathological lymph node segmentation in the
mediastinum. As lymph node annotations are expensive, the challenge was formed as a
weakly supervised learning task, where only a subset of all lymph nodes in the training
set have been annotated. For the challenge submission, multiple methods for training on
these weakly supervised data were explored, including noisy label training, loss masking
of unlabeled data, and an approach that integrated the TotalSegmentator toolbox as a
form of pseudo labeling in order to reduce the number of unknown voxels. Furthermore,
multiple public TCIA datasets were incorporated into the training to improve the perfor-
mance of the deep learning model. Our submitted model achieved a Dice score of 0.628
and an average symmetric surface distance of 5.8 mm on the challenge test set. With
our submitted model, we accomplished third rank in the MICCAI2023 LNQ challenge. A
finding of our analysis was that the integration of all visible, including non-pathological,
lymph nodes improved the overall segmentation performance on pathological lymph nodes
of the test set. Furthermore, segmentation models trained only on clinically enlarged
lymph nodes, as given in the challenge scenario, could not generalize to smaller patho-
logical lymph nodes. The code and model for the challenge submission are available at
https://gitlab.lrz.de/compai/MediastinalLymphNodeSegmentation.
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1. Introduction

In the following section, we introduce the ”Mediastinal Lymph Node Quantification: Seg-
mentation of Heterogeneous CT Data” (LNQ2023) challenge, and discuss related work.

1.1 Motivation

Lymph nodes (LNs) are small anatomical structures scattered throughout the body. Based
on their location, they are grouped into various LN stations according to established def-
initions, such as those from the International Association for the Study of Lung Cancer
(IASLC) (Rusch et al., 2009). During cancer progression, the tumor grows, and cancer
cells spread into nearby anatomical structures, developing into metastasis and radically in-
creasing the severity of the disease. Infiltration of cancerous tissue into LNs may lead to
enlargement of those LNs. Thus, assessing metastatic LNs is a critical factor for initial
diagnosis, tumor staging, and treatment planning. The conventional criteria for quantify-
ing lymph node size is based on Response Evaluation Criteria In Solid Tumours (RECIST)
guidelines (Eisenhauer et al., 2009). Enlarged LNs are defined as those whose shortest diam-
eter exceeds 10 mm on an axial CT slice. Medical professionals solely rely on unidirectional
or bidirectional measurements on a single axial slice of just one or a few LNs, introducing
limitations in capturing the full extent of abnormalities (Guo et al., 2022).

However, studies indicate that solely relying on the feature of shortest LN diameter for
malignancy assessment yields recall rates of only 60%-80% in lung cancer patients (Yan
et al., 2023). The facts that accessing the status of LNs is a complex, time-consuming
task and that the shortest diameter is a limiting metric highlights the necessity for ac-
curate segmentation in three dimensions to comprehensively evaluate lymph node disease
(Guo et al., 2022). Furthermore, precise delineation of all tumorous regions is particularly
crucial in radiation therapy, where irradiating metastatic areas such as LNs impacts pa-
tient outcomes significantly (Chapet et al., 2005). Thus, automated segmentation not only
holds promise for reducing the inter and intra-observer variability, but also reduces the
task-related working time.

The objectives of the LNQ2023 challenge are twofold, each aiming to address critical
aspects in the field of lymph node identification and segmentation (Khajavibajestani et al.,
2023). The primary goal of the challenge was to establish a benchmark for the detection
and segmentation of mediastinal lymph nodes. The mediastinum, located between the lung
lobes, poses a particular challenge due to the presence of ten or more lymph nodes, often
with three or more enlarged nodes exceeding 10 mm in diameter. The secondary goal
focuses on the exploration and application of weakly supervised learning techniques in the
scenario of LN segmentation. Given the time-consuming nature of manual annotation and
the possible presence of several pathological LN instances, there is a lack of pre-existing fully
annotated pathological LN datasets. This setting aligns with the current growing interest
in the medical imaging community in harnessing weak annotations (Kemnitz et al., 2018;
Petit et al., 2018; Zhou et al., 2019; Shi et al., 2021; Dong et al., 2022; Ulrich et al., 2023).
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1.2 Mediastinal Lymph Node Segmentation

The first public dataset for mediastinal LN segmentation was introduced by Roth et al.
(2014, 2015), offering segmentation annotations of enlarged lymph nodes. This task presents
unique challenges due to reduced contrast compared to axillary and pelvic nodes (Nogues
et al., 2016). Early methods often relied on machine learning approaches that incorporated
handcrafted features and manual region-of-interests (ROI) (Aerts et al., 2014a; Liu et al.,
2014, 2016; Oda et al., 2017b,a; Roth et al., 2014). Notably, Roth et al. (2014) introduced
the first neural network (NN) based method, specifically for LN detection after an ROI
proposal step, reducing false positives and marking a shift in methodology.

Building upon this, subsequent works explored various NN-based methods operating
directly on full CT volumes (Bouget et al., 2019, 2023; Guo et al., 2022; Yan et al., 2023;
Iuga et al., 2021).

To enhance segmentation accuracy and robustness, the inclusion of anatomical key re-
gions to guide the segmentation has been explored (Bouget et al., 2023; Oda et al., 2018;
Bouget et al., 2019). The integration of lymph node station information has been a focal
point, initially introduced by Liu et al. (2014). The idea of mapping lymph node stations,
according to IASLC guidelines, has been extended by various methods, including NN-based
approaches. Guo et al. (2022) proposed dedicated encoders for different LN stations, and
Yan et al. (2023) introduced a station-stratified LN detector, emphasizing the importance
of incorporating station information during training (Liu et al., 2014; Guo et al., 2022; Yan
et al., 2023).

1.3 Weakly Supervised Learning

Weakly supervised learning has recently become a popular topic in medical imaging research,
as most datasets only provide annotations for one single or few structures of interest. Com-
bining multiple datasets results in a partially supervised learning setting, as datasets come
with full supervision of a few classes. It forms a special case of weak supervision. Sev-
eral research groups have concentrated on such partially supervised learning approaches,
aiming to enhance model performance by aggregating information from multiple partially
labeled datasets during training (Kemnitz et al., 2018; Petit et al., 2018; Zhou et al., 2019;
Shi et al., 2021; Dong et al., 2022; Ulrich et al., 2023). Some works focus on masking the
loss of missing classes in the current training label (Ulrich et al., 2023; Dong et al., 2022).
Furthermore, different approaches to constrain the loss functions were motivated by mutual
exclusion of classes or implemented by merging classes to superclasses (Kemnitz et al., 2018;
Shi et al., 2021; Ulrich et al., 2023; Petit et al., 2018).

However, there is only limited work outside the partially supervised setting. In the
computer vision domain, missing labels are often treated as background, a method viewed
as a simplistic form of dealing with noisy labels. This approach is effective when the pixels of
missing classes constitute a significantly smaller portion of images compared to background
pixels (Dong et al., 2022).

A general strategy for training on weakly labeled datasets is masking the loss of voxels
lacking annotations (Kemnitz et al., 2018). Additionally, incorporating semi-supervised
learning (SSL) has been explored to gain additional training feedback by mining unlabeled
voxels (Zhou et al., 2019; Petit et al., 2018).
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Most works in SSL focus on the classification or segmentation of completely unlabeled
images. In contrast, the LNQ2023 challenge is given as an incomplete pixel-level label
scenario in which one or multiple foreground instances are annotated. Nguyen et al. (2020)
have explored this particular scenario. They focused on two distinct scenarios: speech
balloon segmentation in comics and cell segmentation in medical imaging. In both cases,
the incomplete annotation is generated using an automatic extraction method. The learning
of background information is facilitated by a small set of background voxels chosen as direct
neighbors of known foreground instances. By applying an SSL technique, they were able to
learn the representation of foreground and background.

1.4 Problem Setting and Contributions

The LNQ2023 challenge goal was to segment all pathological mediastinal LNs from thorax
CT volumes, while the given training labels only covered some instances of the foreground.
Those instances, furthermore, were only covering enlarged pathological LN components.
The problem setting was a weakly or semi-supervised learning task with incomplete pixel-
level annotations. As the challenge was an open challenge, it was allowed to use the public
CT Lymph Nodes dataset from TCIA (Clark et al., 2013; Roth et al., 2015), providing a
set of CT volumes in which enlarged LNs were fully annotated. Our challenge strategy
was to develop a supervised training strategy, handling the incomplete pixel-level labels of
the LNQ2023 challenge data. Furthermore, we integrated additional public data and the
TotalSegmentator (Wasserthal et al., 2023) to gain performance improvements.

Our main contributions are summarized as follows:

1. Starting from a fully annotated dataset of image volumes, namely the public TCIA
Lymph Nodes dataset, we implemented different strategies to integrate the additional
incomplete pixel-level labeled data, as given in the LNQ2023 challenge, into the train-
ing process. Those strategies were noisy label training, loss masking, and wrapping
each foreground instance with a background shell.

2. We applied the public toolbox TotalSegmentator to identify anatomical structures
and, by exclusion, set those to background class voxels. We refer to this as TotalSeg-
mentator Pseudo Labeling.

3. We explored the effect of integrating different public datasets, namely TCIA CT
Lymph Nodes, an annotation-refined version of CT Lymph Nodes, TCIA NSCLC-
Radiomics, TCIA NSCLC-Radiogenomics, and TCIA NSCLC-Radiomics-Interobserver
on the downstream performance.

4. Furthermore, we performed experiments on the impact of adding all visible, poten-
tially non-pathological lymph nodes to the model training on the overall segmentation
performance and the performance regarding the lymph node’s shortest diameter.

2. Integration of Weakly Annotated Data

In the following section, we present the different strategies to integrate the weakly annotated
data into the training process, shown in Figure 1. We cropped the input CT volumes with
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Annotated Lymph Node

Background Class

Missed Lymph Node

Loss Masking

TotalSegmentator Structure

Noisy Label Loss Masking Foreground
Instance Coating

TotalSegmentator
Pseudo Labeling

Figure 1: Sketch of different strategies to handle weakly annotated data in our analysis.
The missed lymph node instance is incorrectly set to the background class in
the noisy label training. For loss masking, foreground instance coating, and
TotalSegmentator Pseudo Labeling, the missing instance is removed from the
training process by loss masking.

the help of the TotalSegmentator, a deep learning-based toolbox capable of segmenting 104
different anatomical structures on CT volumes (Wasserthal et al., 2023). Using the toolbox,
we created a bounding box of the lung lobes, to which the CT volume was cropped. The
resulting image volume then contained the full mediastinum, leading to improved compu-
tational efficiency. As a segmentation network, we used the nnUNet, a fully self-configuring
segmentation pipeline (Isensee et al., 2021).

Noisy Label The unlabeled voxels of the LNQ2023 training set were set to the back-
ground class as a form of noisy labels. Consequently, unlabeled LN instances were näıvely
set to background. The foreground only consisted of the expert-annotated foreground in-
stances.

Loss Masking Another simple strategy to include the weakly labeled image volumes in
the training procedure was to mask out regions without class annotation. For such voxels,
the loss was set to zero so that only labeled voxels contributed to the learning process.

Foreground Instance Coating Given foreground LN instances in the weakly annotated
LNQ2023 training data, we followed the approach of Nguyen et al. (2020) and set voxels
neighboring the foreground instances to the background class. We implemented that by
running the morphological operator binary dilation. In this way, each foreground component
was embedded in a hull of background voxels.

TotalSegmentator Pseudo Labeling All 104 output structures of the TotalSegmenta-
tor, covering organs, vessels, bones, and muscles, by definition, should not contain any LNs.
We exploited this fact to constrain our problem setting. We utilized the output classes to
annotate unlabeled voxels as background if classified as foreground by the TotalSegmen-
tator. During that process, we skipped overwriting expert annotated LN instances in the
LNQ2023 training set. This strategy is especially beneficial in the mediastinum, as the To-
talSegmentator covers many known anatomical structures located within the mediastinum.
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Dataset Volumes Labeled LNs Labeled Enlarged LNs Fully Labeled

LNQ2023 train set 393 558 512 No
LNQ2023 test set 100 845 289 Yes
CT Lymph Nodes 90 294 244 Yes
Bouget Refinements 90 1403 414 Yes
NSCLC datasets 585 0 0 No

Table 1: Lymph node statistics per dataset. A lymph node component is considered en-
larged if its shortest diameter is equal to or greater than 10 mm.
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Figure 2: Histograms of shortest diameter of lymph node components in TCIA CT Lymph
Nodes dataset, refined annotations by Bouget et al. (2019) and the LNQ2023
training and test set.

3. Experiments

In this section, we describe the ablation study we performed to select the building blocks of
the final model submission. For this purpose, we added various training components from
the network training, such as extra training data or different training strategy changes, to
analyze their contribution to the model’s performance on the test set.
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3.1 Data

We included three different source datasets for training the segmentation model. The
LNQ2023 training data consists of 393 weakly annotated thorax CT volumes of patients
suffering from various cancer types, including breast cancer, leukemia, lung cancer, and
others.

Another dataset used is the TCIA CT Lymph Nodes dataset introduced by Roth et al.
(2015). It contains 90 thorax CT volumes with fully annotated mediastinal LNs. Here,
only clinically enlarged LN instances are annotated. The TCIA CT Lymph Nodes dataset
was refined in the work of Bouget et al. (2019). They updated the existing annotations and
integrated all visible LNs without separating them into pathological or healthy LNs.

Furthermore, to increase the amount of data, we added three different lung cancer
datasets, adding up to 585 CT volumes, to the training data. The first is a subset of
the NSCLC-Radiogenomics dataset, consisting of 143 thorax CT volumes with tumor de-
lineation (Gevaert et al., 2012; Bakr et al., 2017, 2018; Clark et al., 2013). The other
lung cancer dataset is the NSCLC-Radiomics containing 422 thorax CT volumes with tu-
mor delineation (Aerts et al., 2014a,b; Clark et al., 2013). Additionally, we integrated the
NSCLC-Radiomics-Interobserver1 dataset by adding the 20 thorax CT volumes and the
delineation of the tumor by the medical expert 1 to the data pool (Wee et al., 2019; Clark
et al., 2013; Aerts et al., 2014a). Multiple individuals of the NSCLC datasets developed
metastatic LNs documented in the patient’s N-staging.

The occurring LN instances per dataset were generated by a connected component
analysis, and statistics of the datasets are specified in Table 1. Not all LN components in
the CT Lymph Nodes dataset were considered enlarged. The Bouget refinements, which
are refined annotations of the standard CT Lymph Nodes dataset, contained more than
four times as many annotated components. The refined version had almost twice as many
enlarged LN instances. LNQ2023 training set is not fully annotated, so the number of LNs
per CT volume should be similar to the LNQ2023 test set. For the NSLC datasets, roughly
half of the patients suffer from pathological thorax LNs, while at least 171 patients had
spread into the mediastinal LNs. The histograms of the shortest LN component diameter
per labeled dataset are shown in Figure 2.

3.2 Ablation Study for Integration Strategy of Weakly Annotated Data

We performed an ablation study to evaluate the various training strategy building blocks.
The LNQ2023 challenge test set, containing 100 fully annotated samples, was used for eval-
uation. The Dice score and the average symmetric surface distance (ASSD) were computed
for performance assessment. Initially, during the challenge, we used 20 samples of the
CT Lymph Nodes dataset for validation of the method development, which we, therefore,
omitted in the trained models of the ablation study.

We used default nnUNet planning and training for all models. All different training
strategies introduced in Section 2 and various combinations of data for training were eval-
uated on the LNQ2023 test set:

• Model 1: Baseline segmentation model trained on 70 fully annotated samples of the
TCIA CT Lymph Nodes dataset. Thus, training annotations only included enlarged
LN components.
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• Model 2: Model trained on data combination of TCIA CT Lymph Node and LNQ2023
training set. Unlabeled voxels were set to background class, so the model was trained
in a noisy label fashion.

• Model 3: Instead of noisy label training here, loss masking was applied. The loss of
the unlabeled voxels was set to zero so that it did not affect the training process.

• Model 4: The LNQ2023 training data was preprocessed with foreground instance
coating with a background margin of one voxel for each hull.

• Model 5: For this model, the TotalSegmentator toolbox was used for reducing the
number of unlabeled voxels by TotalSegmentator Pseudo Labeling.

• Model 6: To evaluate the effect of replacing the standard TCIA CT Lymph Node
annotations with the according Bouget label refinements, a model was trained on
this data combination. As a weakly supervised learning strategy, TotalSegmentator
Pseudo Labeling was used. In the standard TCIA CT Lymph Node annotations, only
enlarged LN components are contained, while the Bouget refinements include all sizes
of LN components.

• Model 7: Finally, the NSCLC data were integrated into the training cohort. A
model using TotalSegmentator Pseudo Labeling was trained on the data combination
of the LNQ2023 training set, CT Lymph Nodes data with Bouget refinements, and
the NSCLC datasets. The given tumor annotations of the NSCLC datasets were set
to background class.

We evaluated the trained models on the 100 samples of the LNQ2023 test set and
computed Dice score plus ASSD. The results of the experiments are shown in Table 3.

3.3 Performance Analysis regarding Lymph Node Shortest Diameter

To test whether a model solely trained on clinically enlarged pathological LN components
was able to segment non-enlarged pathological LN components, we analyzed the predictions
of Model 5 and Model 6 regarding their performance for different LN shortest diameters.

To assess the performance, we iterated through all predicted LN components and com-
puted the overlap of this predicted LN component on its ground truth annotation. The
volume overlap was normalized by its volume, resulting in values between 0 and 1. This
was then interpreted as a proxy of the model sensitivity. Thus, we were able to analyze
the sensitivity over different LN sizes. We repeated the same assessment, iterated through
all annotated ground truth LN components, and computed the overlap of this to the entire
model prediction on the regarding volume, which was then a proxy for the precision.

4. Results

The following presents an analysis of the preprocessing strategies, results of the ablation
study, and an analysis of the segmentation performance on different LN component sizes.
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Statistics Per CT Volume Total Voxels [·106] Labeled-Unlabeled Voxel Ratio [%]

Raw Data 38.2± 24.5 0.02± 0.03
+ ROI crop 7.5± 4.1 0.10± 0.17
+ TotalSegmentator PL 7.5± 4.1 55.05± 3.31

Table 2: Voxel statistics of the LNQ2023 training set for each preprocessing step.

Figure 3: Preprocessing steps performed on LNQ2023 training set example, shown in three
orthogonal views. Top: raw input volume with weak lymph node annotation
(green), Middle: volume after lung bounding box cropping, Bottom: TotalSeg-
mentator Pseudo Labeling setting known structures to the background (blue).

4.1 Image and Annotation Preprocessing

First, the CT volumes were resampled to a common spacing of [3.0 mm, 0.93 mm, 0.93 mm].
The average number of voxels per CT volume and the ratio between labeled and unlabeled
voxels are given in Table 2. The number of voxels per CT volume was reduced from
38.2 · 106 to 7.5 · 106 with the ROI cropping, leading to an increase in the ratio of labeled to
unlabeled voxels from 0.02% to 0.10%. TotalSegmentator Pseudo Labeling further increased
the number of labeled voxels, resulting in a ratio of 55.05%. Figure 3 shows the preprocessing
steps of one LNQ2023 training set example.

4.2 Ablation Study for Integration Strategy of Weakly Annotated Data

The results of the ablation study are presented in Table 3. Model 1, only trained on
the fully annotated CT Lymph Nodes dataset containing only enlarged LN components,
achieved a low Dice score of 0.172 and an ASSD of 48.95 mm on average.
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Figure 4: Different cases of LNQ2023 test set with ground truth annotation and model pre-
dictions. For intuitive visualization the trachea is shown in blue, model prediction
is in yellow and ground truth in green. For inference Model 7 was used. Left:
worst case (Dice score 0.108, ASSD 19.2 mm), Center: average case (Dice score
0.626, ASSD 5.65 mm), Right: best case (Dice score 0.860, ASSD 2.38 mm)

Model Dice Score ↑ ASSD [mm] ↓
Model 1: CT Lymph Nodes dataset 0.172± 0.182 48.95± 64.49

Integration of LNQ2023 training samples:
Model 2: Noisy Label Strategy 0.343± 0.201 18.46± 23.86
Model 3: Loss Masking Strategy 0.552± 0.200 9.37± 9.79
Model 4: Foreground Instance Coating 0.548± 0.219 12.19± 17.62
Model 5: TotalSegmentator PL 0.601± 0.173 7.08± 7.54

Replace Annotations/Add data:
Model 6: Bouget Label Refinements 0.665± 0.143 4.47± 4.67
Model 7: Integration of NSCLC data 0.663± 0.136 3.97± 2.83

Table 3: Performance of the lymph node segmentation model with different strategies to
handle the weakly annotated data and additional training data. Models were
tested on the 100 fully annotated samples of the LNQ2023 test set. Best achieved
scores are highlighted in bold. (↑: higher is better, ↓: lower is better)

Integration of the weakly annotated challenge training data improved the results overall
for all applied weak annotation handling strategies. The worst performance was the noisy
label training, with a Dice score of 0.343 and an ASSD of 9.37 mm. Loss masking and its
variants, foreground instance coating, and TotalSegmentator Pseudo Labeling outperformed
the noisy labels. Foreground instance coating did decrease the performance compared to
raw loss masking in both metrics. The best weak annotation handling strategy was the
TotalSegmentator Pseudo labeling with a Dice score of 0.601 and an ASSD of 7.08 mm.
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Figure 5: Overlap of each ground truth lymph node component with prediction and over-
lap of each predicted lymph node component with all ground truth lymph node
components over the shortest diameter. Lymph node components were binned
regarding shortest diameter in 2.5 mm steps. Model predictions were generated
by Model 5 (green) and Model 6 (blue).

Changing the standard CT Lymph Nodes annotation to the Bouget refinements im-
proved the performance. Important to note is that the Bouget refinements are annota-
tions of all visible LNs. This gave an increase to a Dice score of 0.665 and an ASSD of
4.47 mm with the TotalSegmentator Pseudo Labeling. Furthermore, a model trained with
the additional NSCLC datasets did have a similar Dice score and a slightly better ASSD.
The significance of the segmentation performance is analysed with a non-parametric paired
Wilcoxon signed-rank test in the Appendix A. Predictions of Model 7 on three different
test set cases of the LNQ2023 are shown in Figure 4.

4.3 Performance Analysis regarding Lymph Node Shortest Diameter

In Figure 5, the overlap between the ground truth LN component on prediction components
and the overlap of predicted LN component on ground truth components is plotted. Model
6, which was trained on LN components of all sizes, achieved a better overlap between a
ground truth LN component on a full model prediction on average for all different LN
shortest diameters. Model 5 did detect much fewer LN instances, which are shorter than
10 mm in diameter, than the Model 6.

Overlap between predicted LN instances and complete ground truth annotations per-
forms similarly, while for small LN instances, Model 5 indicates a higher precision.
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5. Challenge Submission

Our submitted challenge model, trained via TotalSegmentator Pseudo Labeling on the com-
bination of Bouget refined CT Lymph Node data, LNQ2023 training set, and the TCIA
NSCLC datasets, ranked third place in the MICCAI LNQ2023 challenge. The model per-
formed slightly worse on the test set than the developed models in the ablation study of
Subsection 3.2. We discuss reasons for this difference in Section 6. The nnUNet instance
of the submission follows all the findings from the ablation study and refers to Model 7 of
the ablation study.

Authors (Team Name) Dice Score ↑ ASSD [mm] ↓
Rank 1: Deissler et al. (Skeleton Suns) 0.674± 0.165 4.5± 4.7
Rank 2: Zhang et al. (IMR) 0.665± 0.163 5.4± 4.3
Rank 3: Fischer et al. (CompAI) 0.628± 0.193 5.8± 3.6
Rank 4: Kondo et al. (HiLab) 0.603± 0.141 8.2± 11.8
Rank 5: Engelson et al. (sofija engelson) 0.569± 0.185 6.9± 4.0

CompAI (ours) without Postprocessing 0.660± 0.150 5.35± 10.71
Model 7 0.663± 0.136 3.97± 2.83

Table 4: Performance of the top five performing team models on the 100 samples from
LNQ2023 test set. Additionally, the performance of our submitted model without
the removal of small LN components is given, as well as the Model 7 from the
ablation study. Best achieved scores are highlighted in bold.

For the challenge submission, the default nnUNet normalization scheme was replaced by
intensity clipping to [−150, 350] inspired by the work of Bouget et al. (2019) and intensity
standardization. Furthermore, the challenge submission model was trained with a learning
rate of 1e− 3 instead of the default 1e− 2 in order to stabilize the training process. Thus,
we increased the number of epochs from default 1000 epochs to 2000 epochs. To train one
nnUNet instance the full available data were used, also integrating the missing 20 samples
of CT Lymph Node for original validation.

The prediction was postprocessed by a connected component analysis for the challenge
submission. Predicted LN components with a short diameter smaller than 9.5 mm were
removed from the prediction so that only LN components that are considered enlarged are
kept. The ranking of the challenge participating teams is given in Table 4. Our submission
was ranked third place in the Lymph Node Quantification Challenge 2023 with a Dice score
of 0.628 and an ASSD of 5.8 mm.

Model 7 of our ablation study would have achieved third place in the Dice score while
having the lowest standard deviation. Furthermore, it would have scored the best ASSD
among all challenge submission models.

6. Discussion

For the challenge, only semantic segmentation maps have been provided, while the CT
Lymph Nodes dataset comes with instance segmentation annotations. Therefore, original
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annotations of the CT Lymph Nodes were interpreted as semantic segmentation maps, and
LN components were created by a connected component analysis. Thus, there is a difference
in the reported LN instances in the work of Roth et al. (2015) compared to ours.

In Table 1, the number of LN components is provided for each dataset. For the CT
Lymph Nodes dataset, which should only contain enlarged LNs, also a subset of non-
enlarged LNs are included. An explanation for this trend is that clinicians follow the
RECIST guidelines and thus only consider axial slice directions. For the LNQ2023 training
set, the same trend holds but is less prominent. This might originate from the weak anno-
tating done by the physicians, probably resulting in a bias toward the larger pathological
LNs per image volume.

Another related surprising finding was the difference in enlarged LN instances in CT
Lymph Nodes and the Bouget refinements. There might be a bias originating from the
intention of annotating all visible LNs in the refinements, while the clinicians searched only
for enlarged LNs via the RECIST criteria in the standard dataset. Another factor is that
each LN of a neighboring LN cluster might be considered as healthy, while annotating all
of them and processing the cluster with a connected component analysis can result in an
enlarged LN component.

The TCIA CT Lymph Nodes dataset was essential for the development of the proposed
method, as it provided fully annotated training cases. A possible solution to solve the task
with only the weakly annotated challenge data is to follow the work of Nguyen et al. (2020),
which refers to foreground instance coating. By using TotalSegmentator Pseudo Labeling
the performance in this scenario would improve. Another approach would be noisy label
training. We did not perform any experiments on the challenge data alone.

In our scenario, the noisy label training improved the performance compared to only
using CT Lymph Nodes. The integration of the LNQ2023 training set outweighed the effect
of false negatives generated from unlabeled LN instances.

We hypothesize the reason for the failure of the foreground coating is the difficulty
of labeling LNs in a binary manner, as LN are known to be confluent and miss sharp
intensity drops at their boundary. Thus, the instance coating might generate a lot of
false negatives. Increasing the margin of the coating might reduce this issue and lead to
performance gains. Furthermore, the presence of bulky lymph nodes in which only one LN
instance was annotated will result in false negative annotations.

TotalSegmentator Pseudo Labeling offers limited generalization to other tasks, as it is
only applicable to CT modality and differs in coverage for all body regions. Furthermore,
there is also a small overlap between LN voxels and TotalSegmentator structures, leading
to false negatives. There might be better structure subsets of the TotalSegmentator for the
LN segmentation task.

The segmentation models benefit from integrating the Bouget refinements, also reported
in the work of Bouget et al. (2023). We support their hypothesis that the inclusion of all
visible LNs is an efficient form of data augmentation, integrating possible LN locations.
Another aspect is the incorporation of non-enlarged LNs into the training, which is essential
as models trained only on enlarged LNs are not generalizing well on small LNs.

We hypothesize that the better performance of ASSD and more stable Dice scores, when
including the NSCLC data, originates from the higher number of training samples and the
learning of lung cancer anomalies as background.
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Extending the method with a semi-supervised learning method, in the form of Totalseg-
mentator Pseudo Labeling, was shown to improve the model. Additionally, pseudo labeling
of the remaining unlabeled voxels as described in the work of Huang et al. (2022) might
further increase the performance.

Until the final challenge submission, the goal of the challenge, that all pathological
lymph nodes should be segmented, was ambiguous to us. Our intention was to segment
only clinically enlarged lymph nodes. Thus, we introduced the postprocessing of filtering the
segmentation regarding LN enlargement. This postprocessing led to a lower performance.
Nevertheless, we were still able to achieve third place in the final challenge ranking.

In this work, different strategies to handle weak annotations were proposed that sig-
nificantly improved the performance on the task of mediastinal pathological lymph node
segmentation. The usage of the TotalSegmentator was highly beneficial in our case as ROI
cropping but also as a network providing informative pseudo labels. Different datasets were
integrated into the training and were fundamental for the submission model. One impor-
tant finding is that the integration of non-pathological lymph nodes also aided our task of
pathological lymph node segmentation.
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