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Abstract

Increased usage of automated tools like deep learning in medical image segmentation
has alleviated the bottleneck of manual contouring. This has shifted manual labour to
quality assessment (QA) of automated contours which involves detecting errors and cor-
recting them. A potential solution to semi-automated QA is to use deep Bayesian un-
certainty to recommend potentially erroneous regions, thus reducing time spent on er-
ror detection. Previous work has investigated the correspondence between uncertainty
and error, however, no work has been done on improving the “utility” of Bayesian un-
certainty maps such that it is only present in inaccurate regions and not in the accu-
rate ones. Our work trains the FlipOut model with the Accuracy-vs-Uncertainty (AvU)
loss which promotes uncertainty to be present only in inaccurate regions. We apply this
method on datasets of two radiotherapy body sites, c.f. head-and-neck CT and prostate
MR scans. Uncertainty heatmaps (i.e. predictive entropy) are evaluated against voxel
inaccuracies using Receiver Operating Characteristic (ROC) and Precision-Recall (PR)
curves. Numerical results show that when compared to the Bayesian baseline the pro-
posed method successfully suppresses uncertainty for accurate voxels, with similar pres-
ence of uncertainty for inaccurate voxels. Code to reproduce experiments is available at
https://github.com/prerakmody/bayesuncertainty-error-correspondence.
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Improving Uncertainty-Error Correspondence

1. Introduction

In recent years, deep learning models are being widely used in radiotherapy for the task of
medical image segmentation. Although these models have been shown to accelerate clinical
workflows (Zabel et al., 2021; Van Dijk et al., 2020), they still commit contouring errors
(Brouwer et al., 2020). Thus, a thorough quality assessment (QA) needs to be conducted,
which places a higher time and manpower requirement on clinical resources. This creates a
barrier to the adoption of such deep learning models (Petragallo et al., 2022). Moreover, it
also creates an obstacle for adaptive radiotherapy (ART) workflows, which have been shown
to improve a patient’s post-radiation quality-of-life (Grepl et al., 2023). This obstacle arises
due to ART’s need of regular contour updates. Currently, commercial auto-contouring tools
do not have the ability to assist with quick identification and rectification of potentially
erroneous predictions (Brouwer et al., 2020; Petragallo et al., 2022).

Quality assessment (QA) of incorrect contours would require two steps – 1) error detec-
tion and 2) error correction (Chaves-de-Plaza et al., 2022). Currently, errors are searched
for by manual inspection and then rectified using existing contour editing tools. Error de-
tection could be semi-automated by recommending either potentially erroneous slices of a
3D scan (Wang et al., 2020), or by highlighting portions of the predicted contours (Sander
et al., 2020) or blobs (Nair et al., 2020). Upon detection of the erroneous region, the con-
tours could be rectified using point or scribble-based techniques (Lei et al., 2019; Sambaturu
et al., 2023) in a manner that adjacent slices are also updated. For this work, we will focus
on error detection.

Various approaches to error detection have suggested using Bayesian Deep Learning
(BDL) and the uncertainty that it can produce as a method to capture potential errors
in the predicted segmentation masks (Wang et al., 2020; Sander et al., 2020; Nair et al.,
2020; Garifullin et al., 2021; Bragman et al., 2018; Ng et al., 2022; Camarasa et al., 2021).
Although such works established the potential usage of uncertainty in the QA of predictions,
it may not be sufficient in a clinical workflow that relies on pixel-wise uncertainty as a proxy
for error detection. In our experiments with deep Bayesian models, we observed that the
relationship between prediction errors and uncertainty is sub-optimal, and hence has low
clinical “utility”. Ideally, for semi-automated contour QA, the uncertainty should be present
only in inaccurate regions and not in the accurate ones. At times, literature usually refers to
this as uncertainty calibration (Kumar et al., 2019; Krishnan and Tickoo, 2020; Zhang et al.,
2020; Camarasa et al., 2021; Gruber and Buettner, 2022), but we find this term incorrect
as historically, calibration is referred to in context of probabilities of a particular event
(Dawid, 1982). Thus, we believe it is semantically incorrect to say uncertainty calibration
and instead propose to use the term uncertainty-error correspondence.

To create a Bayesian model that is incentivized to produce uncertainty only in inaccurate
regions, we use the Accuracy-vs-Uncertainty (AvU) metric (Mukhoti and Gal, 2018) and
its probabilistic loss version (Krishnan and Tickoo, 2020) during training of a UNet-based
Bayesian model (Wen et al., 2018). This loss promotes the presence of both accurate-if-
certain (nac) as well as inaccurate-if-uncertain (niu) voxels in the final prediction (Figure 1).
With uncertainty present only around potentially inaccurate regions, one can achieve im-
proved synergy between clinical experts and their deep learning tools during the QA stage.
Our work is the first to use the AvU loss in a dense prediction task like medical image
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Figure 1: Method overview - A 3D medical scan (e.g. CT/MR) is input into a UNet-based
Bayesian neural net to produce both predicted contours (Pred) and predictive uncertainty
(Unc). While the cross-entropy loss is used to improve segmentation performance, the
Accuracy-vs-Uncertainty (AvU) loss is used to improve uncertainty-error correspondence.
The AvU loss is computed by comparing the prediction with the ground truth (GT ) at
a specific uncertainty threshold using four terms: count of accurate-and-certain (nAC),
accurate-and-uncertain (nAU), inaccurate-and-certain (nIC) and inaccurate-and-uncertain
(nIU) voxels.

segmentation and also with datasets containing natural and not synthetic variations as was
previously done (Krishnan and Tickoo, 2020). This work extends our conference paper
(Mody et al., 2022a) with additional datasets, experiments and metrics. There, we adapt
the original AvU loss by considering the full theoretical range of uncertainties in the loss,
rather than one extracted from the validation dataset (Krishnan and Tickoo, 2020). For
our work we use the predictive entropy as an uncertainty metric (Gal, 2016).

Several other approaches have been considered in context of uncertainty, for e.g. en-
sembles, test time augmentation (TTA) and model calibration. While ensembles of models
have good segmentation performance (Mehrtash et al., 2020; Ng et al., 2022), they are
parameter heavy. TTA (Wang et al., 2019b; Hekler et al., 2023) performs inference by
modulating a models inputs, but does not perform additional training, so may be unable
to transcend its limitations. Calibration techniques attempt to make predictions less over-
confident (Guo et al., 2017; Pereyra et al., 2017; Müller et al., 2019; Mukhoti et al., 2020;
Islam and Glocker, 2021; Murugesan et al., 2023b), however they do not explicitly align
model errors with uncertainty. All the above methods are benchmarked on the truthfulness
of their output probabilities (when compared against voxel accuracies) using metrics like
expected calibration error (ECE). However, a model with lower ECE than its counterparts
may not necessarily have higher uncertainty-error correspondence.

Finally, to evaluate calibrative and uncertainty-error correspondence metrics, one needs
to compute the “true” inaccuracy map. Similar to our conference paper (Mody et al.,
2022a) and inspired by Sander et al. (2020), we classify inaccuracies of predicted voxel
maps into two categories: “errors” and “failures” (see Appendix A). Segmentation “errors”
are those inaccuracies which are considered an artifact similar to inter-observer variation,
a phenomenon common in medical image segmentation (Brouwer et al., 2012; van der Veen
et al., 2019). Thus, we consider these smaller inaccuracies to be accurate in our compu-
tations, under the assumption they do not require clinical intervention. In the context of
contour QA, such voxels should ideally be certain. Hence, only the segmentation “failures”
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are a part of the “true” inaccuracy map used to calculate the calibrative and uncertainty-
error correspondence metrics.

To summarize, our contributions are as follows:

• For the purpose of semi-automated quality assessment of predicted contours, we aim
to improve uncertainty-error correspondence (unc-err) in a Bayesian medical image
segmentation setting, pioneering this in the context of radiation therapy. Specifically,
we propose using the loss form of the Accuracy-vs-Uncertainty (AvU) metric while
training a deep Bayesian segmentation model.

• We compare our Bayesian model with the AvU loss against an ensemble of deter-
ministic models, five approaches employing calibration-based losses and also test time
augmentation. We also perform an architectural comparison by comparing models
with Bayesian convolutions placed in either the middle layers or decoder layers of a
deep segmentation model.

• We benchmark unc-err of the segmentation models on both in- and out-of-distribution
radiotherapy datasets containing head-and-neck CT and Prostate MR scans. Models
are benchmarked on these datasets across discriminative, calibrative and uncertainty-
error correspondence metrics.

2. Related Works

2.1 Epistemic and aleatoric uncertainty

Recent years have seen an increase in work that utilizes probabilistic modeling in deep
medical image segmentation. The goal has been to account for uncertainty due to noise
in the dataset (aleatoric uncertainty) as well as in the limitations of the predictive models
learning capabilities (epistemic uncertainty). Noise in medical image segmentation refers
to factors like inter- and intra- annotator contour variation (Brouwer et al., 2012; van der
Veen et al., 2019) due to factors such as poor contrast in medical scans. Works investigating
aleatoric uncertainty model the contour diversity in a dataset by either placing Gaussian
noise assumptions on their output (Monteiro et al., 2020) or by assuming a latent space in the
hidden layers and training on datasets containing multiple annotations per scan (Hu et al.,
2019). A popular and easy-to-implement approach to model for aleatoric uncertainty is
called test-time augmentation (TTA) (Wang et al., 2019a). Here, different transformations
of the image are passed through a model, and the resulting outputs are combined to produce
both an output and its associated uncertainty.

In contrast to aleatoric uncertainty, epistemic uncertainty could be used to identify
scans (or parts of the scan) that are very different from the training dataset. Here, the
model is unable to make a proper interpolation from its existing knowledge. Methods such
as ensembling (Mehrtash et al., 2020) and Bayesian posterior inference (e.g., Monte-Carlo
DropOut, Stochastic Variational Inference) (Sander et al., 2020; Nair et al., 2020; Wang
et al., 2020; Garifullin et al., 2021; Bragman et al., 2018; Gibson et al., 2022; Krishnan and
Tickoo, 2020) are common methods to model epistemic uncertainty in neural nets. While
Bayesian modeling is a more mathematically motivated and hence, principled approach to
estimating uncertainty, ensembles have been motivated by the empirically-proven concept
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of bootstrapping. In contrast to Bayesian models where the perturbation is modelled by
placing distributions on weights, ensembles use either different model weight initializations,
or different subsets of the training data. In Bayesian inference techniques, perturbations
are introduced in the models activation or weight space. Dropout (Gal and Ghahramani,
2016) and DropConnect (Wan et al., 2013) are popular techniques that apply the Bernoulli
distribution on these spaces. Stochastic variational inference (SVI) is another type of weight
space perturbation that usually assumes the more expressive Gaussian distribution on the
weights. Bayes by Backprop (Blundell et al., 2015) and its resource-efficient variant such
as FlipOut (Wen et al., 2018) are examples of SVI. For our work, we consider approaches
that are designed for both epistemic uncertainty (Ensembles and SVI models) as well as
aleatoric uncertainty (TTA).

2.2 Uncertainty use during training

Other works also use the uncertainty from a base segmentation network to automatically
refine its output using a follow-up network. This refinement network can be graphical
(Soberanis-Mukul et al., 2020) or simply convolutional (Sander et al., 2020). Uncertainty
can also be used in an active learning scenario, either with (Diaz-Pinto et al., 2022) or with-
out (Iwamoto et al., 2021) interactive refinement. Shape-based features of uncertainty maps
have also been shown to identify false positive predictions (Bhat et al., 2022). Similarly,
we too use uncertainty in our training regime, but with the goal of promoting uncertainty
only in those regions which are inaccurate, an objective not previously explored in medical
image segmentation.

2.3 Model calibration

In context of segmentation, model calibration error is inversely proportional to the align-
ment of a models output probabilities with its pixel-wise accuracy. Currently there is no
proof that reduction in model calibration error leads to improved uncertainty-error corre-
spondence. However, a weak link can be assumed since both are derived from a models
output probabilities. It is well known that the probabilities of deterministic models trained
on the cross entropy (CE) loss are not well calibrated (Guo et al., 2017). This means
that they are overconfident on incorrect predictions and hence fail silently, which is an
undesirable trait in context of segmentation QA and needs to be resolved.

To abate this overconfidence issue, methods such as post-training model calibration (or
temperature scaling) (Guo et al., 2017; Ding et al., 2021; Ouyang et al., 2022), ensembles
(Mehrtash et al., 2020; Ovadia et al., 2019), calibration-focused training losses (Pereyra
et al., 2017; Mukhoti et al., 2020; Murugesan et al., 2023b,a) and calibration-focused train-
ing targets (Müller et al., 2019; Islam and Glocker, 2021) have been shown to improve
model calibration for deterministic models. Temperature scaling, a post-training model
calibration technique, has been shown to perform poorly in out-of-domain (OOD) settings
(Ovadia et al., 2019), relies wholly on an additional validation dataset and/or needs ex-
plicit shape priors (Ouyang et al., 2022).Local temperature scaling techniques have been
proposed that calibrate on the image or pixel level (Ding et al., 2021), however they are
still conceptually similar to the base method and are hence plagued by the same concerns.
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Others (Ouyang et al., 2022) used a shape prior module for out-of-domain robustness, but
they only introduced synthetic textural variations in their work.

Another approach to model calibration is to regularize a model during train to promote
uncertainty. For e.g. the ECP (Pereyra et al., 2017) technique explicitly adds the negative
entropy to the training loss. Conversely, the Focal loss (Lin et al., 2017; Mukhoti et al.,
2020)attempts to calibrate a model implicitly by assigning lower weights (during training)
to more confident predictions. Other methods smooth the hard targets of the ground truth
towards a uniform distribution in the limit. For e.g. Label Smoothing (Szegedy et al.,
2016; Müller et al., 2019)modifies the class distribution of a pixel by calculating a weighted
average (using parameter α) between the hard target and a uniform distribution. On the
other hand, Spatial Varying Label Smoothing (SVLS) (Islam and Glocker, 2021) modifies
a pixel’s class allocation by considering classes around it. Margin-based Label Smoothing
(MBLS) (Liu et al., 2022; Murugesan et al., 2023b) reformulates the above approaches
by showing that they essentially perform loss optimization where an equality constraint is
applied on a pixels logits. MBLS attempts to achieve the best discriminative-calibrative
trade-off by softening this equality constraint. They subtract the max logit of a pixel with
its other logits and only penalize those logit distances that are greater than a predetermined
margin. Others extend the MBLS framework by either learning class-specific weights for
the equality constraint (Liu et al., 2023) or reformulating SVLS to a formulation similar to
MBLS (Murugesan et al., 2023a). Although these methods attempt to make models less
overconfident, they do not explicitly align a model’s error to its uncertainty.

There also exist other approaches to model calibration for e.g., multi-task learning
(Karimi and Gholipour, 2022), mixup augmentation (Thulasidasan et al., 2019) and shape
priors (Karimi et al., 2019). Multi-task learning requires additional data that may not al-
ways be present, while mixup creates synthetic samples which are not representative of the
real data distribution. Finally, shape priors may not be applicable to tumors with variable
morphology.

Model calibration techniques are evaluated by metrics like Expected Calibration Error
(ECE) and its variants (Nixon et al., 2019), however others have also proposed terms like
Uncertainty-Calibration Error (UCE) (Laves et al., 2019; Ghoshal and Tucker, 2022). While
ECE evaluates the equivalency between accuracy and predicted probability, UCE compares
inaccuracy and uncertainty. However, while it is semantically appropriate to expect an
average probability of p (0 ≤ p ≤ 1) to give the same average accuracy (i.e., the mathe-
matical formulation of ECE), the same is not appropriate for inaccuracy and uncertainty
u (0 ≤ u ≤ 1). Hence, UCE is not applicable to our work.

To conclude, the issue with each of the aforementioned techniques for epistemic, aleatoric
and calibrative modeling is that they do not explicitly train the model to develop an innate
sense of potential errors on a given segmentation task. Given that this is the primary
requirement from a contour QA perspective, these models may be unable to have good
uncertainty-error correspondence.
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3. Methods

3.1 Neural Architecture

We adopt the OrganNet2.5D neural net architecture (Chen et al., 2021) which is a stan-
dard encoder-decoder model connected by four middle layers. It contains both 2D and 3D
convolutions in the encoder and decoder as well as hybrid dilated convolutions (HDC) in
the middle. This network performs fewer pooling steps to avoid losing image resolution and
instead uses HDC to expand the receptive field. To obtain uncertainty corresponding to the
output, we add stochasticity to the deterministic convolutional operations by replacing them
with Bayesian convolutions (Blundell et al., 2015; Wen et al., 2018). We experiment with
replacing deterministic layers in both the HDC as well as the decoder layers to understand
the effect of placement.

In a Bayesian model, a prior distribution is placed upon the weights and is then updated
to a posterior distribution on the basis of the training data. During inference (Equation 1),
we sample from this posterior distribution p(W |D) to estimate the output distribution
p(y|x,D) with x, y and W being the input, output and neural weight respectively:

p(y|x,D) = EW∼p(W |D)

[
p(y|x,W )

]
. (1)

This work uses a Bayesian posterior estimation technique called stochastic variational in-
ference, where instead of finding the true, albeit intractable posterior, it finds a distribution
close to it. We chose FlipOut-based (Wen et al., 2018) convolutions which assume the dis-
tribution over the neural weights to be a Gaussian and are factorizable over each hidden
layer. Pure variational approaches would need to sample from this distribution for each
element of the mini-batch (Blundell et al., 2015). However, the FlipOut technique only
samples once and multiplies that random sample with a Rademacher matrix, making the
forward pass less computationally expensive.

3.2 Training Objectives

In this section , we use a notation format, where capital letters denote arrays while non-
capital letters denote scalar values.

3.2.1 Segmentation Objective

Upon being provided a 3D scan as input, our segmentation model predicts for each class
c ∈ C, a 3D probability map P̂c of the same size. Each voxel i ∈ N has a predicted
probability vector P̂ i containing values p̂ic for each class that sum to 1 (due to softmax).

To calculate the predicted class of each voxel ŷi, we do:

ŷi = argmax
c∈C

p̂ic. (2)

To generate a training signal, the predicted probability vector P̂ i is compared to the
corresponding one-hot vector Y i in the gold standard 3D annotation mask. Y i is composed
of yic ∈ {0, 1}. Inspired by (Taghanaki et al., 2019; Yeung et al., 2022), we re-frame the
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binary cross-entropy loss (Equation 3), as penalizing both the foreground (yic = 1) and
background ((1 − yic) = 1) voxels of the probability maps of each class with a weight wc:

LCE = − 1

|C|

(∑
c∈C

wc

[∑
i∈N

(
yi
c ln(p̂ic) + (1 − yic) ln(1 − p̂ic))]
.

(3)

Note, we do not utilize the DICE loss for training as it has been shown to have lower
model calibration metrics (Mody et al., 2022b). Also, since the CE loss is susceptible to fail
during a class-imbalance, we use its weighted version.

3.2.2 Uncertainty Objective

In a Bayesian model, multiple forward passes (m ∈ M) are performed and the output 3D

probability maps ˆ(Pc)m of each pass are averaged to output P̂c Equation 1. Using P̂c, we can
calculate a host of statistical measures like entropy, mutual information and variance. We
chose entropy as it has been shown to capture both epistemic uncertainty, which we explicitly
model in FlipOut layers, as well as aleatoric uncertainty, which is implicitly modeled due to
training data (Gal, 2016). We use the predicted class probability vector P̂ i for each voxel
and calculate its (normalized) entropy ui:

ui = − 1

ln(|C|)
∑
c∈C

p̂ic ln(p̂ic). (4)

Since we have access to the gold standard annotation mask, each voxel has two prop-
erties: accuracy and uncertainty. Accuracy is determined by comparing the gold standard
class yi to the predicted class ŷi. We use this to classify them in four different categories
represented by nac, nau, nic and niu, where n stands for the total voxel count and a, i, u, c
represent the accurate, inaccurate, uncertain and certain voxels. A visual representation of
these terms can be seen in Figure 1. Here, a voxel is determined to be certain or uncertain
on the basis of a chosen uncertainty threshold t ∈ T where the maximum value in T is the
maximum theoretical uncertainty threshold (Mody et al., 2022a). The aforementioned four
terms are the building blocks of the Accuracy-vs-Uncertainty (AvU) metric (Mukhoti and
Gal, 2018) as shown in Equation 5 - Equation 7 and it has a range between [0,1]. A higher
value indicates that uncertainty is present less in accurate regions and more in inaccurate
regions, thus improving the “utility” of uncertainty as a proxy for error detection.
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AvUt =
nact + niut

nact + naut + nict + niut
(5)

nt
ac =

∑
i∈
{
yi=ŷi &
ui≤t

} 1, nt
au =

∑
i∈
{
yi=ŷi &
ui>t

} 1 (6)

nt
ic =

∑
i∈
{
yi ̸=ŷi &
ui≤t

} 1, nt
iu =

∑
i∈
{
yi ̸=ŷi &
ui>t

} 1 (7)

To maximize AvU for a neural net, one can turn it into a loss metric to be minimized.
As done in Krishnan and Tickoo (2020) for an image classification setting, we minimize
its negative logarithm (Equation 8) to improve mathematical stability of gradient descent.
However, the AvU metric, as defined above, is not differentiable with respect to the neu-
ral net’s weights. This is due to all its constituent terms being produced either due to
thresholding or max operations which introduce discontinuities that disrupt gradient flows..
The AvU metric is made differentiable by instead using the uncertainty ui derived from
P̂ i (Equation 4), thus allowing for gradient flows. . Also, a smooth non-linear operation
i.e., tanh is used to constrain its value (Equation 9). The differentiable uncertainty term is

multiplied by other scalar weighing terms c.f. the maximum probability (p̂i = max(P̂ i)) and
accuracy/inaccuracy mask for a voxel. All these operations together allow us to calculate
proxy values for nac, nau, nic and niu. In addition, rather than evaluating the loss at a sin-
gle uncertainty threshold, we integrate over the theoretical range of the uncertainty metric.
Thresholding is done by once again multiplying the uncertainty value with a binary mask.
The benefits of thresholding were shown in our conference paper (Mody et al., 2022a):

LAvUt = − ln

(
1 +

nt
au + nt

ic

nt
ac + nt

iu

)
,

LAvU =
1

T

∑
t∈T

LAvUt ,
(8)

where

nt
ac =

∑
i∈
{
yi=ŷi &
ui≤t

} p̂i · (1 − tanh(ui)),

nt
ic =

∑
i∈
{
yi ̸=ŷi &
ui≤t

}(1 − p̂i) · (1 − tanh(ui)),

nt
au =

∑
i∈
{
yi=ŷi &
ui>t

} p̂i · tanh(ui)

nt
iu =

∑
i∈
{
yi ̸=ŷi &
ui>t

}(1 − p̂i) · tanh(ui).
(9)

Finally, the total loss L combines the segmentation and uncertainty loss as:

L = LCE + α · LAvU. (10)
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3.3 Evaluation

3.3.1 Discriminative and Calibration Evaluation

We evaluate all models on the DICE coefficient for discriminative performance. Calibration
is evaluated using the Expected Calibration Error (ECE) (Guo et al., 2017). Numerical
results are compared with the Wilcoxon signed-ranked test where a p-value ≤ 0.05 is con-
sidered significant.

3.3.2 Uncertainty Evaluation

As the model is trained on the Accuracy-vs-Uncertainty (AvU) metric, we calculate the
AvU scores up to the maximum normalized uncertainty of the validation dataset. A curve
with the AvU score on the y-axis and the uncertainty threshold on the x-axis is made and
the area-under-the-curve (AUC) for each scan is calculated. AUC scores provide us with a
summary of the model performance regardless of the uncertainty threshold, and hence we
use it to compare all models.

The AvU metric outputs a single scalar value for the whole scan and does not offer much
insight into the differences in uncertainty coverage between the accurate and inaccurate
regions. To abate this, we compare the probability of uncertainty in inaccurate regions
p(u|i) to the probability of uncertainty in accurate regions p(u|a). Let us plot p(u|i) and
p(u|a) on the y-axis and x-axis of a graph respectively, and define niu, nau, nac and nic, as
the count of true positives, false positives, true negatives and false negatives respectively.
Thus, p(u|i) is the true positive rate and p(u|a) is the false positive rate. Computing this
at different uncertainty thresholds provides us with the Receiver Operating Characteristic
(ROC) curve, which we call the uncertainty-ROC curve (Wan et al., 2013).

Given that ROC curves are biased in situations with class imbalances between positive
(inaccurate voxels) and negative (accurate voxels) classes, we also compute the precision-
recall curves (Camarasa et al., 2021).Here, precision is the probability of inaccuracy given
uncertainty p(i|u) and recall is the probability of uncertainty given inaccuracy p(u|i). Note,
that the precision-recall curves do not make use of nac, which can be high in count for a
well-performing model.

Finally, to calculate the calibrative and uncertainty-correspondence metrics, we need
an inaccuracy map. We use an inaccuracy map based on the concept of segmentation
“failures” and “errors” (Appendix A). To do this, we perform a morphological opening
operation using a fixed kernel size of (3,3,1).

4. Experiments and Results

4.1 Datasets

4.1.1 Head-and-Neck CT

Our first dataset contained Head and Neck CT scans of patients from the RTOG 0522
clinical trial (Ang et al., 2014). The annotated data, which had been collected from the
MICCAI2015 Head and Neck Segmentation challenge, contained 33 CT scans for training,
5 for validation and 10 for testing (Raudaschl et al., 2017). We further expanded the test
dataset with annotations of 8 patients belonging to the RTOG trial from the DeepMindT-
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CIA dataset (DTCIA) (Nikolov et al., 2021). This dataset included annotations for the
mandible, parotid glands, submandibular glands and brainstem. Although there were an-
notations present for the optic organs, we ignored them for this analysis as they are smaller
compared to other organs and require special architectural design choices. Since the train
and test patients came from the same study, we considered this as an in-distribution dataset.
We also tested our models on the STRUCTSeg (50 scans) dataset (Ye et al., 2022), hereby
shortened as STRSeg. While the RTOG dataset contained American patients, the STRSeg
dataset was made up of Chinese patients and hence considered out-of-distribution (OOD)
in context of the training data. The uncertainties of this dataset were evaluated to a value
of 0.4 since that is the maximum empirical normalized entropy.

4.1.2 Prostate MR

Our second dataset contained MR scans of the prostate for which we use the ProstateX
repository (Meyer et al., 2021) containing 66 scans as the training dataset. The Medical
Decathlon (Prostate) dataset with 34 scans (Antonelli et al., 2022) and the PROMISE12
repository with 50 scans (Litjens et al., 2014) served as our test dataset. The Medical De-
cathlon dataset (abbreviated as PrMedDec henceforth) contained scans from the same clinic
as the ProstateX training dataset. We combined the Peripheral Zone (PZ) and Transition
Zone (TZ) from the MedDec dataset into 1 segmentation mask. The PROMISE12 dataset
(abbreviated as PR12) was chosen for testing since literature (Mehrtash et al., 2020) has
shown lower performance on it and hence it serves as a good candidate to evaluate the utility
of uncertainty. This dataset is different from ProstateX due to the usage of an endo-rectal
coil in many of its scans as well as the presence of gas pockets in the rectum and dark
shadows due to the usage of older MR machines. Thus, although these datasets contained
scans of the prostate region, there exists a substantial difference in their visual textures.
The maximum empirical normalized entropy of this 2-class dataset is 1.0 and hence the
uncertainty-error correspondence metrics were calculated till this value.

4.2 Experimental Settings

We tested the Accuracy-vs-Uncertainty (AvU) loss on four datasets containing scans of
different modalities and body sites. We trained 11 models: Det (deterministic), Det+AvU,
Ensemble, Focal, LS (Label Smoothing), SVLS (Spatially Varying Label Smoothing), MbLS
(Margin based Label Smoothing), ECP (Explicit Confidence Penalty), TTA (Test-Time
Augmentation), Bayes and Bayes + AvU. As the names suggest, Bayes and Bayes + AvU
are Bayesian versions of the deterministic OrganNet2.5D model (Chen et al., 2021). The
baseline Bayes model contained Bayesian convolutions in its middle layers and was trained
using only the cross-entropy (CE) loss. The Bayes + AvU was trained using both the CE
and Accuracy-vs-Uncertainty (AvU) loss. Two additional Bayesian models were trained
which tests if the placement of the Bayesian layers had any effect: BayesH and BayesH +
AvU. Here, BayesH refers to the Bayesian model with Bayesian layers in the head of the
model (i.e the decoder). Results for these models can be found in Appendix E.

The Ensemble was made of M = 5 deterministic models with different initializations
(Ovadia et al., 2019). For TTA, we applied Gaussian noise and random pixel removals for
M = 5 times each and then averaged their outputs. The hyperparameters of the other
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models were chosen on the basis of the best discriminative, calibrative and uncertainty-
error correspondence metrics on the validation datasets (C). For the calibration focused
methods we used the following range of hyperparameters: Focal (γ = 1, 2, 3), MbLS (m =
8, 10, 20, 30) for head-and-neck CT, MbLS (m = 3, 5, 8, 10) for prostate MR, LS (α =
0.1, 0.05, 0.01), SVLS (γ = 1, 2, 3) and ECP (λ = 0.1, 1.0, 10.0, 100.0) for head-and-neck
CT and ECP (λ = 0.1, 1.0, 10.0, 100.0, 1000.0) for prostate MR. For the AvU loss, we
evaluated weighting factors in the range [10,100,1000,10000] for the head-and-neck dataset,
and [100,1000,10000] for the Prostate dataset.

We trained our models for 1000 epochs using the Adam optimizer with a fixed learning
rate of 10−3. The deterministic model contained ≈ 550K parameters and thus the Ensemble
contained ≈ 2.75M parameters. Since the Bayesian models double the parameter count in
their layers they incurred an additional parameter cost and ended up with a total of ≈ 900K
parameters.

4.3 Results

In Section 4.3.1 and Section 4.3.2 we show discriminative (DICE), calibrative (ECE) and
uncertainty-error correspondence metrics (ROC-AUC, PRC-AUC) for the two datasets.

4.3.1 Head-and-neck CT

Results in Table 1 showed that the AvU loss on the Bayes model significantly improved
calibrative and uncertainty-error correspondence (unc-err) metrics for both in-distribution
(ID) and out-of-distribution (OOD) datasets. The Bayes+AvU model also always per-
formed better than the Det, calibration-focused and TTA models for unc-err metrics. Also,
its ECE scores were in most cases better than calibration-focused models. However, there
was no clear distinction between the performance of the Ensemble and Bayes+AvU model
for ECE and unc-err metrics across both datasets. Also, the AvU loss did not benefit the
unc-err metrics for the Det model, in both datasets. Of all the calibration-focused models,
LS had the lowest ECE and unc-err metrics, while the ECP model had the best unc-err
metrics. When compared to Det, the TTA model improved calibrative and unc-err metrics
for the OOD dataset, while maintaining it for the ID dataset.

Visually, the Bayes+AvU model was able to successfully suppress uncertainty in the
true positive (TP) (Case 1/2 in Figure 2a) and true negative (TN) (Case 3 in Figure 2a)
regions of the predicted contour. Moreover, it also showed uncertainty in false positive (FP)
regions while also suppressing uncertainty in TP regions (Case 3 in Figure 2b). Calibrative
models (e.g. Focal, LS, SVLS ) tended to be quite uncertain in TP or TN regions, which
may lead to additional QA time. Detailed descriptions are provided in Appendix D.

4.3.2 Prostate MR

Similar to the head-and-neck CT dataset, the use of the AvU loss on the baseline Bayes
model significantly improved its uncertainty-error correspondence (unc-err) while main-
taining calibration performance (Table 2). Moreover, it improved the DICE values such
that its one of the most competitive amongst all models. Also, the Bayes+AvU had
better performance in both unc-err and calibrative metrics when compared to the Det,
calibration-focused and TTA models. When comparing to the Ensemble, the Bayes+AvU
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Table 1: Volumetric (DICE ), calibrative (ECE ) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate head-and-neck (H&N)
CT test datasets which are either in-distribution (ID) or out-of-distribution (OOD). The
arrows in the table header indicate whether a metric should be high (↑) or low (↓). Here, †

and bold are used to indicate a statistical significance and improved results upon compar-
ing a Bayesian model and its AvU-loss version, while underlined numbers indicate the best
value for a metric across a dataset.

Test
Dataset

Model
DICE ↑
(x10−2)

ECE ↓
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

ID
————
H&N CT
(RTOG)

Det 84.2 ± 2.7 9.0 ± 2.1 73.0 ± 5.7 21.0 ± 4.8
Det + AvU 83.8 ± 2.9 8.6 ± 2.7 73.1 ± 6.0 20.8 ± 4.0
Focal 84.3 ± 2.4 9.3 ± 1.5 70.3 ± 5.5 18.2 ± 3.2
ECP 84.4 ± 2.3 9.0 ± 2.0 73.8 ± 5.4 21.0 ± 3.7
LS 83.0 ± 3.0 7.5 ± 2.2 62.6 ± 3.3 17.5 ± 4.0
SVLS 84.2 ± 2.6 9.0 ± 2.0 70.8 ± 7.1 18.1 ± 3.5
MbLS 84.0 ± 2.6 9.2 ± 2.1 67.5 ± 5.7 19.5 ± 3.5
TTA 84.1 ± 2.8 9.1 ± 2.1 72.9 ± 5.9 20.8 ± 3.9
Ensemble 85.0 ± 2.6 7.8 ± 1.8 78.6 ± 4.7 25.7 ± 6.8
Bayes 83.9 ± 2.6 8.6 ± 2.1 74.1 ± 5.4 22.1 ± 3.5
Bayes+AvU 83.6 ± 2.5 7.6 ± 2.5† 76.1 ± 5.6† 25.1 ± 5.3†

OOD
————
H&N CT
(STRSeg)

Det 78.1 ± 4.6 12.9 ± 2.6 62.2 ± 4.5 24.1 ± 3.7
Det + AvU 78.6 ± 4.7 12.7 ± 3.0 60.8 ± 4.7 22.4 ± 4.1
Focal 77.2 ± 6.7 12.5 ± 2.9 57.0 ± 4.6 20.9 ± 4.2
ECP 78.8 ± 4.3 12.5 ± 2.6 61.5 ± 4.8 23.2 ± 3.6
LS 77.7 ± 6.0 10.3 ± 2.9 56.7 ± 3.3 20.6 ± 4.3
SVLS 79.0 ± 6.0 11.3 ± 2.5 59.9 ± 5.4 21.6 ± 2.7
MbLS 77.5 ± 6.3 13.4 ± 3.0 56.9 ± 5.0 21.5 ± 3.6
TTA 78.1 ± 4.6 12.7 ± 2.6 62.7 ± 4.6 24.9 ± 4.1
Ensemble 78.6 ± 5.2 10.6 ± 2.4 64.7 ± 4.9 28.2 ± 5.1
Bayes 75.0 ± 9.9 12.4 ± 4.0 64.8 ± 5.0 27.7 ± 5.8
Bayes+AvU 76.3 ± 7.7 12.1 ± 3.7 65.8 ± 5.0† 30.1 ± 6.5†

had similar DICE. While Bayes+AvU had better calibrative and unc-err performance in
the in-distribution (ID) dataset, the Ensemble performed better in the out-of-distribution
(OOD) setting. The AvU loss had no positive effect on the DICE and unc-err performance
of the Det model in both the ID and OOD setting, however there was an increase in ECE.

Visual results show that the Bayes+AvU successfully suppresses uncertainty in the true
negative (Case 1 in Figure 3a, Case 2 in Figure 3b) and true positive (Case 2 in Figure 3a)
regions of the predicted contour. It also shows uncertainty in the false positive regions
(Case 2 in Figure 3a, Case 1/3 in Figure 3b)
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(a) H&N CT (RTOG) (in-distribution)

(b) H&N CT (STRSeg) (out-of-distribution)

Figure 2: Uncertainty-error correspondence for the head-and-neck (H&N) CT (a,b) dataset.
Slices of the CT scans are shown in pairs to understand the 3D nature of segmentation
uncertainty heatmaps. The color bar on the right depicts the range of uncertainty values
while green and blue are used for ground truth and prediction contours respectively.
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(a) Prostate MR (PrMedDec) (in-distribution)

(b) Prostate MR (PR12) (out-of-distribution)

Figure 3: Uncertainty-error correspondence for the Prostate MR (a,b) dataset. Slices of
the MR scans are shown in pairs to understand the 3D nature of segmentation uncertainty
heatmaps. The color bar on the right depicts the range of uncertainty values while green
and blue are used for ground truth and prediction contours respectively.
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Table 2: Volumetric (DICE ), calibrative (ECE ) and uncertainty-error correspondence
(ROC-AUC, PRC-AUC) metrics for all models. Here, we evaluate Prostate MR test datasets
which are either in-distribution (ID) or out-of-distribution (OOD). The arrows in the table
header indicate whether a metric should be high (↑) or low (↓). Here, † and bold are used
to indicate a statistical significance and improved results upon comparing a Bayesian model
and its AvU-loss version, while underlined numbers indicate the best value for a metric
across a dataset.

Test
Dataset

Model
DICE ↑
(x10−2)

ECE ↓
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

ID
————
Prostate

MR
(PrMedDec)

Det 84.1 ± 5.6 12.9 ± 6.0 92.5 ± 5.7 28.0 ± 3.7
Det + AvU 83.7 ± 6.8 16.9 ± 8.1 92.1 ± 6.8 28.2 ± 3.4
Focal 81.1 ± 15.4 10.2 ± 5.0 93.2 ± 5.5 29.3 ± 3.4
ECP 84.0 ± 5.5 16.7 ± 7.1 92.1 ± 6.0 27.6 ± 4.3
LS 83.4 ± 7.2 15.1 ± 8.6 83.2 ± 7.8 25.1 ± 3.1
SVLS 83.5 ± 6.7 14.0 ± 8.1 90.5 ± 7.9 21.7 ± 2.6
MbLS 84.2 ± 4.9 17.9 ± 7.4 92.2 ± 5.6 26.9 ± 3.6
TTA 83.8 ± 5.8 16.4 ± 7.1 92.7 ± 5.6 28.8 ± 3.9
Ensemble 84.5 ± 5.7 11.3 ± 6.5 94.3 ± 4.3 30.0 ± 4.6
Bayes 84.0 ± 5.8 8.6 ± 4.7 94.7 ± 3.1 29.1 ± 4.8
Bayes+AvU 84.9 ± 6.9 8.9 ± 6.0 95.7 ± 3.2† 30.5 ± 4.5†

OOD
————
Prostate

MR
(PR12)

Det 74.2 ± 12.6 15.6 ± 6.3 87.9 ± 7.5 22.1 ± 6.2
Det + AvU 74.5 ± 13.0 27.6 ± 14.3 88.2 ± 7.6 22.0 ± 7.1
Focal 71.2 ± 17.4 12.1 ± 5.8 89.0 ± 7.1 24.3 ± 6.7
ECP 74.8 ± 12.5 22.3 ± 10.2 87.2 ± 8.1 20.6 ± 7.0
LS 74.5 ± 13.0 21.7 ± 11.5 79.5 ± 8.9 19.1 ± 7.2
SVLS 76.9 ± 11.5 17.9 ± 9.3 87.2 ± 7.2 16.4 ± 5.2
MbLS 73.6 ± 12.5 19.9 ± 7.4 86.5 ± 7.2 21.8 ± 5.6
TTA 74.0 ± 12.8 23.7 ± 11.4 88.6 ± 7.4 24.9 ± 5.8
Ensemble 76.3 ± 12.2 9.7 ± 5.0 91.6 ± 5.2 28.4 ± 5.7
Bayes 70.6 ± 16.6 11.8 ± 7.2 89.1 ± 7.4 25.7 ± 5.1
Bayes+AvU 76.3 ± 12.6 11.4 ± 6.7 90.6 ± 6.9† 26.2 ± 7.4†

5. Discussion

Although medical image segmentation using deep learning can now predict high quality
contours which can be considered clinically acceptable, a manual quality assessment (QA)
step is still required in a clinical setting. To truly make these models an integral part
of clinical workflows, we need them to be able to express their uncertainty and for those
uncertainties to be useful in a QA setting. To this end, we test 11 models which are either
Bayesian, deterministic, calibration-focused or ensembled.
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(a) AvU Curve (RTOG) (b) ROC Curve (RTOG) (c) PRC Curve (RTOG)

(d) AvU Boxplot (RTOG) (e) ROC Boxplot (RTOG) (f) PRC Boxplot (RTOG)

(g) AvU Curve (MedDec) (h) ROC Curve (PrMedDec) (i) PRC Curve (PrMedDec)

(j) AvU Boxplot (PrMedDec) (k) ROC Boxplot (PrMedDec) (l) PRC Boxplot (PrMedDec)

Figure 4: The figures above show the distribution of the uncertainty-error correspondence
metrics as curves and boxplots (with swarm plots) for patients from the RTOG clinical trial
(a-f) as well as for the Medical Decathlon (Prostate) dataset (g-l). We only evaluate up to
the maximum uncertainty of each dataset as the metrics do not change beyond that.

5.1 Discriminative and Calibrative Performance

In context of DICE and ECE, the use of the AvU loss on the baseline Bayes model always
showed results which have never statistically deteriorated. Moreover, the DICE results for
the in-distribution (ID) head-and-neck dataset (RTOG) were on-par with existing state-of-
the-art models (83.6 vs 84.7 for Nikolov et al. (2021)). The same held for the ID Prostate
dataset (PRMedDec) where results were better than advanced models (84.9 vs 83.0 for
Antonelli et al. (2022)). These results validate the use of our neural architecture (Chen
et al., 2021), and training strategy.

Secondly, although the Ensemble model, in general, had better or equivalent DICE and
ECE scores across all 4 datasets, it also required 3x more parameters than the Bayes+AvU
model. Also, as expected, and due to 5x more parameters, the Ensemble model performed
better than the Det model for DICE and ECE.

Finally, in the regime of segmentation “failures” as the inaccuracy map, the calibrative
methods did not generally have improved calibration performance when compared to the
Det model. In theory, these models regularize the model’s probabilities by making it more
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uncertain and hence avoid overconfidence. In practice however, this leads to the predicted
contours being uncertain along their accurate boundaries, most evident in visual examples
of the Focal and SVLS model (see Figure 2 and Figure 3). Also, visual image characteristics
in different regions of the scan that are similar to the segmented organs may cause these
models to showcase uncertainty in those areas (for e.g. patches of uncertainty in Case 3 of
Figure 2a).

5.2 Uncertainty-Error Correspondence Performance

Although calibrative metrics are useful to compare the average truthfulness of a model’s
probabilities, they may not be relevant to real-world usage in a pixel-wise segmentation
QA scenario. Considering a clinical workflow in which uncertainty can be used as a proxy
for error-detection, we evaluate the correspondence between them. Results showed that
across both in- and out-of-distribution datasets, the Bayes+AvU model has one of the
highest uncertainty-error correspondence metrics. Similar trends were observed for the
BayesH+AvU (Appendix E) model, however Bayes+AvU was better. We hypothesize
that this is due to perturbations in the bottleneck of UNet-like models having a better
understanding of semantic concepts (e.g., shape, size etc) than the decoder layers. However,
the AvU loss did not offer benefit to the Det model on both datasets indicating that this
loss may rely on the model to already exhibit some level of uncertainty.

An interesting case is shown in Figure 2b (Case 3) which showed uncertainty on the
white blob (a vein) in the middle of the grey tissue of the organ. Many models showed
uncertainty on the vein due to a difference in its texture from that of the organ. However,
this information may be distracting to a clinician as they are using uncertainty for error
detection. Given that there were no segmentation “failures”, our Bayes+AvU model suc-
cessfully suppressed all uncertainties. In another case (Figure 2a - Case 3), we saw that
for 3D segmentation, uncertainty is also 3D in nature. Our Bayes+AvU model had an
error in the second slice and correctly showed uncertainty there. However, this uncertainty
overflowed on the first slice and hence penalized the uncertainty-error correspondence met-
rics. Such results indicate that during contour QA, the clinician can potentially trust our
AvU loss models more than other models as they are better indicative of potential errors.
This reduces time wasted analyzing false positive regions (i.e., accurate but uncertain) and
hence increases trust between an expert and deep learning-based contour QA tools. Also
note that in general, the two-class prostate dataset visually showcased higher levels of un-
certainty than the six-class head-and-neck dataset.

As seen in Table 1, Table 2 and Figure 4, there is no clear choice between the top two
performing models i.e., Bayes+AvU and Ensemble for uncertainty-error correspondence.
The visual results, however, indicate that the Ensemble model is more uncertain in accurate
regions. Also, for all the datasets, the Det model has high AvU scores when compared to
the Bayes+AvU model (Appendix C). Here, it is important to consider that the AvU
metric (Equation 7) is essentially uncertainty accuracy, and thus, also comes with its own
pitfalls. Given that all models had a DICE value which leads to more accurate terms and
less inaccurate terms, the AvU metric got skewed due to the large count of nac terms.
However, upon factoring the ROC and PRC curves, it becomes evident that the Det model
is not the best performing for uncertainty-error correspondence.
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Finally, all calibration-focused methods - Focal, ECP, LS, SVLS and MBLS had ROC
and PRC metrics lower than the baseline Bayes model indicating that training for model
calibration may not necessarily translate to uncertainty outputs useful for error detection.

5.3 Future Work

In a radiotherapy setting, the goal is to maximize radiation to tumorous regions and min-
imize it for healthy organs. This goal is often not optimally achieved due to imperfect
contours caused by time constraints and amorphous region-of-interest boundaries on medi-
cal scans. Thus, an extension of our work could evaluate the contouring corrections made
by clinicians in response to uncertainty-proposed errors in context of the dose changes to
the different regions of interest. Such an experiment can better evaluate the clinical utility
of an uncertainty-driven error correction workflow.

6. Conclusion

This work investigates the usage of the Accuracy-vs-Uncertainty (AvU) metric to improve
clinical “utility” of deep Bayesian uncertainty as a proxy for error detection in segmenta-
tion settings. Experimental results indicate that using a differentiable AvU metric as an
objective to train Bayesian segmentation models has a positive effect on uncertainty-error
correspondence metrics. We show that our AvU-trained Bayesian models have equivalent
or improved uncertainty-error correspondence metrics when compared to various calibrative
and uncertainty-based methods. Given that our approach is a loss function, it can be used
with other neural architectures capable of estimating uncertainty.

Given that deep learning models have shown the capability of reaching near expert-level
performance in medical image segmentation, one of the next steps in their evolution is
evaluating their clinical utility. Our work shows progress on this using a uncertainty-driven
loss in a Bayesian setting. We do this for two radiotherapy body-sites and modalities as
well in an out-of-distribution setting. Our hope is that the community is inspired by our
positive results to further contribute to human-centric approaches to deep learning-based
modeling.
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cauteren. Aleatoric uncertainty estimation with test-time augmentation for medical image
segmentation with convolutional neural networks. Neurocomputing, 338:34–45, 2019a.

1072



Improving Uncertainty-Error Correspondence

Guotai Wang, Wenqi Li, Michael Aertsen, Jan Deprest, Sébastien Ourselin, and Tom Ver-
cauteren. Aleatoric uncertainty estimation with test-time augmentation for medical image
segmentation with convolutional neural networks. Neurocomputing, 338:34–45, 2019b.

Guotai Wang, Michael Aertsen, Jan Deprest, Sébastien Ourselin, Tom Vercauteren, and
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Appendices

A. Segmentation “Failures” and “Errors”

(a) Contours (b) Inaccuracy Map (c) Segmentation Errors (d) Segmentation Failures

Figure 5: The green and blue contours in a) show the ground truth (GT) and predicted
contours. In b) we see the inaccuracy map in black, while c) and d) show the smaller
segmentation “errors” and larger segmentation “failures” respectively.

B. Weightage of AvU loss

The table below show the weights used for the AvU loss which were finetuned on the
validation datasets of the head-and-neck CT and prostate MR. The final weightage was
chosen by identifying the inflection point at which the ROC-AUC and PRC-AUC drop
precipitously. Given that the AvU loss is a log term, its values are inherently small (≤ 1.0).
This is then added to the cross-entropy term, which is a sum of logs (Eqn (3)) over all the
voxels (=N) and all the classes (=C). Thus, we used a balancing term in the range of 101

to 104.

Table 3: Uncertainty-error correspondence results (higher is better) to select the weightage
of the AvU loss. Underlined numbers indicate the maximum value for a metric.

Validation
Dataset

Model
AvU-AUC
(x10−2)

ROC-AUC
(x10−2)

PRC-AUC
(x10−2)

H&N CT
(MICCAI2015)

Bayes 34.1 ± 0.7 79.1 ± 4.7 25.9 ± 2.9
Bayes + 10AvU 34.5 ± 0.9 78.2 ± 6.0 26.1 ± 3.4
Bayes + 100AvU 35.5 ± 0.6 79.6 ± 4.8 28.0 ± 3.5
Bayes + 1000AvU 35.9 ± 6.9 76.4 ± 5.8 23.1 ± 1.7

Prostate
MR

(ProstateX)

Bayes 93.2 ± 1.8 95.3 ± 1.9 30.3 ± 2.9
Bayes + 100AvU 94.9 ± 2.1 95.9 ± 2.0 31.5 ± 3.5
Bayes + 1000AvU 95.5 ± 1.9 96.3 ± 2.4 32.0 ± 3.3
Bayes + 10000AvU 96.1 ± 1.7 93.1 ± 2.1 29.3 ± 3.1
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C. Hyperparameter selection

In the tables shown below, we report results for different hyperparameters of different model
classes. If the DICE of a hyperparameter is 10.0 points lower than the class maximum, we
ignore it. We also ignore models with large drops in ECE or AvU-AUC when compared to
models in its own class. To choose the best hyperparameter, it has to perform as the best
in four out of the five metrics, else we chose the middlemost hyperparameter.

Table 4: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck validation dataset for the pur-
pose of hyperparameter selection. The experiment indicated as bold is the one with the
best performance.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 83.6 ± 2.2 8.5 ± 1.6 35.1 ± 1.1 74.8 ± 5.0 24.5 ± 0.9
Det + 10AvU 83.4 ± 1.7 8.4 ± 1.6 35.4 ± 1.0 74.4 ± 4.8 23.2 ± 1.4
Det + 100AvU 83.6 ± 1.4 8.1 ± 1.5 36.1 ± 0.6 75.6 ± 2.9 23.4 ± 2.1
Det + 1000AvU 58.1 ± 6.9 14.7 ± 4.0 30.2 ± 1.6 78.8 ± 4.6 23.0 ± 10.6
Focal(γ=1) 84.1 ± 0.8 8.0 ± 0.6 32.4 ± 0.7 73.9 ± 4.1 21.5 ± 3.4
Focal(γ=2) 83.4 ± 1.3 9.6 ± 8.3 24.8 ± 1.1 73.7 ± 1.6 22.7 ± 4.1
Focal(γ=3) 84.1 ± 1.9 15.5 ± 1.9 17.5 ± 7.4 73.1 ± 3.2 12.6 ± 1.9
ECP(λ=0.1) 83.9 ± 1.3 8.3 ± 1.3 35.3 ± 0.8 75.1 ± 4.3 22.3 ± 0.8
ECP(λ=1.0) 84.0 ± 1.1 8.5 ± 0.8 35.4 ± 0.7 75.3 ± 3.2 23.4 ± 1.4
ECP(λ=10.0) 83.2 ± 2.1 8.7 ± 1.3 35.2 ± 0.8 74.9 ± 3.9 24.6 ± 2.1
ECP(λ=100.0) 81.2 ± 6.4 17.9 ± 1.5 28.7 ± 2.8 65.4 ± 5.6 17.5 ± 5.2
LS(α=0.01) 83.0 ± 2.1 8.1 ± 1.3 32.6 ± 0.9 70.9 ± 2.6 23.4 ± 2.7
LS(α=0.05) 83.6 ± 1.2 6.1 ± 1.0 24.9 ± 0.4 64.5 ± 3.3 18.1 ± 2.0
LS(α=0.1) 83.5 ± 1.2 7.9 ± 1.2 17.5 ± 0.1 63.9 ± 2.2 22.2 ± 1.1
SVLS(σ=1) 83.5 ± 1.3 7.7 ± 0.7 32.3 ± 0.8 71.5 ± 2.5 19.9 ± 0.4
SVLS(σ=2) 83.5 ± 1.7 8.1 ± 0.9 31.8 ± 1.0 70.5 ± 3.8 17.7 ± 1.5
SVLS(σ=3) 84.1 ± 2.0 7.7 ± 0.7 31.9 ± 1.0 71.3 ± 4.4 19.2 ± 3.2
MbLS(λ = 0.1,m=30) 82.7 ± 1.8 8.5 ± 0.6 34.9 ± 1.0 74.0 ± 4.3 23.1 ± 1.2
MbLS(λ = 0.1,m=20) 84.4 ± 1.4 8.0 ± 1.1 35.2 ± 0.7 72.3 ± 3.3 20.4 ± 1.0
MbLS(λ = 0.1,m=10) 82.7 ± 1.8 8.5 ± 0.6 32.9 ± 0.7 68.4 ± 3.0 21.7 ± 2.2
MbLS(λ = 0.1,m=8) 62.9 ± 7.6 18.75 ± 1.4 26.0 ± 0.4 74.9 ± 4.0 39.1 ± 2.7

MbLS(λ = 1,m=20) 83.2 ± 1.3 8.9 ± 1.5 35.0 ± 0.9 72.4 ± 4.4 22.5 ± 1.1
MbLS(λ = 10,m=20) 83.4 ± 1.4 8.5 ± 2.0 34.2 ± 1.1 72.2 ± 4.4 23.1 ± 2.0
MbLS(λ = 100,m=20) 81.8 ± 1.8 8.0 ± 1.1 32.1 ± 0.9 69.6 ± 4.8 21.0 ± 2.3
TTA 83.5 ± 2.2 8.5 ± 1.7 34.9 ± 1.1 75.3 ± 5.2 25.2 ± 1.7
Ens 84.9 ± 1.6 6.8 ± 0.9 34.1 ± 1.1 80.8 ± 3.2 28.2 ± 4.1
Bayes 84.2 ± 2.9 7.8 ± 1.3 34.1 ± 0.7 79.1 ± 4.7 25.9 ± 2.9
Bayes + 10AvU 83.1 ± 2.9 7.6 ± 2.0 34.5 ± 0.9 78.2 ± 6.0 26.1 ± 3.4
Bayes + 100AvU 83.2 ± 1.7 7.0 ± 1.9 35.5 ± 0.6 79.6 ± 4.8 28.0 ± 3.5
Bayes + 1000AvU 84.3 ± 1.0 7.5 ± 1.5 35.9 ± 6.9 76.4 ± 5.8 23.1 ± 1.7
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Table 5: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck iD dataset. The experiment
indicated as bold is the one with the best performance. * indicates hyperparameters cho-
sen by the validation dataset.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 84.2 ± 2.7 9.0 ± 2.1 35.5 ± 1.5 73.0 ± 5.7 21.0 ± 4.8
Det + 10AvU 83.7 ± 2.3 9.3 ± 2.2 35.7 ± 1.3 70.6 ± 5.3 20.0 ± 3.6
Det + 100AvU* 83.8 ± 2.9 8.6 ± 2.7 36.2 ± 1.4 73.1 ± 6.0 20.8 ± 4.0
Det + 1000AvU 62.3 ± 5.6 12.1 ± 2.9 30.7 ± 1.2 78.0 ± 4.6 16.0 ± 9.0
Focal(γ=1)* 84.3 ± 2.4 9.3 ± 1.5 32.5 ± 0.9 70.3 ± 5.5 18.2 ± 3.2
Focal(γ=2) 84.2 ± 2.0 11.2 ± 1.6 25.1 ± 0.7 69.4 ± 4.9 17.2 ± 3.0
Focal(γ=3) 83.9 ± 2.5 15.7 ± 2.3 17.9 ± 5.3 70.5 ± 5.0 12.2 ± 2.9
ECP(λ=0.1) 84.4 ± 2.2 8.9 ± 2.1 35.7 ± 1.3 72.9 ± 6.3 20.1 ± 3.8
ECP(λ=1.0)* 84.4 ± 2.3 9.0 ± 2.0 35.9 ± 1.3 73.8 ± 5.4 21.0 ± 3.7
ECP(λ=10.0) 84.3 ± 2.7 9.2 ± 2.4 35.8 ± 1.4 73.5 ± 6.0 20.6 ± 4.3
ECP(λ=100.0) 70.8 ± 3.9 18.6 ± 2.8 21.4 ± 2.7 58.7 ± 2.6 28.9 ± 7.1
LS(α=0.01) 83.4 ± 2.8 9.0 ± 2.9 32.9 ± 0.1 66.1 ± 5.7 18.4 ± 3.6
LS(α=0.05)* 83.0 ± 3.0 7.5 ± 2.2 25.1 ± 0.5 62.6 ± 3.3 17.5 ± 4.0
LS(α=0.1) 84.1 ± 2.3 8.4 ± 2.9 17.5 ± 0.1 62.3 ± 2.5 18.5 ± 3.5
SVLS(σ=1)* 83.9 ± 2.5 9.0 ± 2.3 32.6 ± 1.1 69.6 ± 8.3 18.8 ± 2.8
SVLS(σ=2) 84.2 ± 2.6 9.0 ± 2.0 32.2 ± 1.1 70.8 ± 7.1 18.1 ± 3.5
SVLS(σ=3) 83.9 ± 2.7 9.0 ± 2.2 32.1 ± 1.2 69.3 ± 7.0 18.8 ± 2.8
MbLS(λ = 0.1,m=30) 83.7 ± 2.6 9.0 ± 2.0 35.4 ± 1.2 70.0 ± 5.6 19.7 ± 4.1
MbLS(λ = 0.1,m=20)* 84.0 ± 2.6 9.2 ± 2.1 35.3 ± 1.3 67.5 ± 5.7 19.5 ± 3.5
MbLS(λ = 0.1,m=10) 82.4 ± 2.6 9.8 ± 2.8 33.1 ± 1.2 64.1 ± 7.0 18.3 ± 3.1
MbLS(λ = 0.1,m=8) 62.4 ± 8.2 18.9 ± 1.6 26.3 ± 0.4 73.6 ± 6.6 38.3 ± 4.1

MbLS(λ = 1,m=20) 83.4 ± 2.5 9.2 ± 2.6 35.4 ± 1.3 71.3 ± 7.0 20.1 ± 3.6
MbLS(λ = 10,m=20) 83.0 ± 3.4 9.5 ± 2.8 34.6 ± 1.4 69.1 ± 6.0 20.1 ± 4.1
MbLS(λ = 100,m=20) 82.5 ± 3.2 9.1 ± 3.0 32.4 ± 1.4 68.2 ± 7.3 19.0 ± 2.9
TTA 84.1 ± 2.8 9.1 ± 2.1 35.5 ± 1.4 72.9 ± 5.9 20.8 ± 3.9
Ens 85.0 ± 2.7 7.8 ± 1.9 34.5 ± 1.2 78.6 ± 4.7 25.7 ± 6.8
Bayes 83.9 ± 2.6 8.7 ± 2.1 34.5 ± 1.2 74.1 ± 5.4 22.1 ± 3.5
Bayes + 10AvU 83.4 ± 2.8 8.7 ± 2.4 34.7 ± 1.3 74.7 ± 4.9 24.4 ± 4.1
Bayes + 100AvU* 83.6 ± 2.5 7.6 ± 2.5 35.6 ± 1.2 76.1 ± 5.6 25.1 ± 5.3
Bayes + 1000AvU 83.5 ± 3.0 8.5 ± 3.4 36.1 ± 1.5 77.2 ± 6.0 24.7 ± 4.5
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Table 6: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on head-and-neck OOD dataset. The experiment
indicated as bold is the one with the best performance. * indicates hyperparameters chosen
by the validation dataset.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 78.1 ± 4.6 12.9 ± 2.6 33.4 ± 1.4 62.2 ± 4.5 24.1 ± 3.7
Det + 10AvU 76.3 ± 6.9 13.7 ± 3.5 33.3 ± 1.7 58.3 ± 4.6 23.3 ± 4.4
Det + 100AvU* 78.6 ± 4.7 12.7 ± 3.0 34.2 ± 1.5 60.8 ± 4.7 22.4 ± 4.1
Det + 1000AvU 42.5 ± 7.2 12.1 ± 2.1 28.9 ± 1.7 66.1 ± 5.8 19.0 ± 6.2
Focal(γ=1)* 77.2 ± 6.7 12.5 ± 2.9 30.6 ± 1.7 57.0 ± 4.6 20.9 ± 4.2
Focal(γ=2) 77.7 ± 5.2 12.2 ± 1.9 24.1 ± 0.9 57.5 ± 4.6 21.0 ± 4.1
Focal(γ=3) 79.0 ± 5.2 13.3 ± 1.6 18.6 ± 0.7 59.8 ± 4.9 16.6 ± 3.9
ECP(λ=0.1) 78.5 ± 4.9 12.6 ± 2.8 33.5 ± 1.6 59.8 ± 4.9 22.0 ± 3.8
ECP(λ=1.0)* 78.8 ± 4.3 12.5 ± 2.6 36.6 ± 1.5 61.5 ± 4.8 23.2 ± 3.6
ECP(λ=10.0) 78.9 ± 4.5 12.4 ± 2.5 33.8 ± 1.5 60.1 ± 4.7 22.1 ± 3.5
ECP(λ=100.0) 62.0 ± 6.1 20.0 ± 1.8 19.9 ± 2.9 56.0 ± 2.8 36.5 ± 9.7
LS(α=0.1) 77.7 ± 6.0 8.9 ± 2.7 17.9 ± 0.3 57.6 ± 1.9 23.9 ± 4.4
LS(α=0.05)* 77.7 ± 6.0 10.3 ± 2.9 24.3 ± 0.7 56.7 ± 3.3 20.6 ± 4.3
LS(α=0.01) 77.9 ± 5.4 13.3 ± 2.8 31.1 ± 1.5 58.6 ± 3.9 22.4 ± 3.7
SVLS(σ=1)* 78.3 ± 6.1 11.5 ± 3.0 31.4 ± 1.4 61.1 ± 4.9 23.3 ± 3.3
SVLS(σ=2) 79.0 ± 6.0 11.3 ± 2.5 31.4 ± 1.2 59.9 ± 5.4 21.6 ± 2.7
SVLS(σ=3) 78.6 ± 5.1 11.5 ± 2.9 31.1 ± 1.5 58.7 ± 5.0 22.5 ± 3.8
MbLS(λ = 0.1,m=30) 76.5 ± 7.1 13.6 ± 3.9 32.1 ± 2.9 58.9 ± 4.1 24.7 ± 7.7
MbLS(λ = 0.1,m=20)* 77.5 ± 6.3 13.4 ± 3.0 33.4 ± 1.5 56.9 ± 5.0 21.5 ± 3.6
MbLS(λ = 0.1,m=10) 76.8 ± 6.3 13.0 ± 3.2 31.7 ± 1.4 53.0 ± 4.5 20.6 ± 3.9
MbLS(λ = 0.1,m=8) 50.3 ± 10.6 20.1 ± 2.8 26.2 ± 0.9 61.1 ± 7.1 34.1 ± 3.7

MbLS(λ = 1,m=20) 77.3 ± 6.2 13.2 ± 2.8 33.3 ± 1.6 61.0 ± 4.5 23.4 ± 4.1
MbLS(λ = 10,m=20) 78.1 ± 5.3 13.0 ± 2.9 32.9 ± 1.5 57.0 ± 4.1 21.7 ± 3.5
MbLS(λ = 100,m=20) 78.2 ± 4.9 12.7 ± 2.5 31.6 ± 1.3 55.0 ± 5.1 19.7 ± 3.5
TTA 78.1 ± 4.6 12.7 ± 2.6 33.2 ± 1.5 62.7 ± 4.6 24.9 ± 4.1
Ens 78.6 ± 5.2 10.6 ± 2.4 32.1 ± 1.9 64.7 ± 4.9 28.2 ± 5.1
Bayes 75.0 ± 9.9 12.4 ± 4.0 32.2 ± 1.8 64.8 ± 5.0 27.7 ± 5.8
Bayes + 10AvU 74.9 ± 9.5 12.4 ± 4.0 32.1 ± 2.0 65.2 ± 4.6 29.1 ± 6.1
Bayes + 100AvU* 76.3 ± 7.7 12.1 ± 3.7 33.2 ± 1.7 65.8 ± 5.0 30.1 ± 6.5
Bayes + 1000AvU 75.5 ± 8.2 14.3 ± 4.1 33.5 ± 1.8 69.3 ± 5.6 32.9 ± 6.9
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Table 7: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate validation dataset for the purpose of
hyperparameter selection. The experiment indicated as bold is the one with the best per-
formance.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 85.9 ± 1.8 14.4 ± 3.2 96.5 ± 0.9 92.6 ± 4.1 26.5 ± 1.5
Det + 100AvU 84.8 ± 2.3 16.3 ± 3.9 96.1 ± 0.9 91.7 ± 4.2 27.9 ± 2.8
Det + 1000AvU 84.8 ± 1.9 16.0 ± 3.0 96.4 ± 0.9 93.6 ± 3.2 29.2 ± 1.0
Det + 10000AvU 84.9 ± 3.5 16.7 ± 5.1 96.5 ± 1.0 91.8 ± 2.7 25.9 ± 2.3
Ensemble 85.4 ± 1.7 13.4 ± 3.0 96.0 ± 1.0 94.8 ± 2.4 31.4 ± 1.6
Focal(γ=1) 84.5 ± 2.7 13.3 ± 4.3 90.7 ± 1.1 93.0 ± 4.1 29.4 ± 1.7
Focal(γ=2) 84.4 ± 2.1 9.8 ± 2.6 82.5 ± 1.0 93.8 ± 2.3 30.9 ± 2.1
Focal(γ=3) 84.5 ± 1.9 6.4 ± 1.5 58.9 ± 1.3 92.0 ± 4.3 30.5 ± 2.6
ECP(λ=0.1) 85.9 ± 1.8 14.6 ± 3.0 96.5 ± 0.9 91.9 ± 4.2 25.8 ± 1.7
ECP(λ=1.0) 85.7 ± 1.8 14.7 ± 3.0 96.4 ± 1.0 92.3 ± 3.9 26.4 ± 1.7
ECP(λ=10.0) 85.7 ± 1.7 14.8 ± 2.7 96.4 ± 1.0 91.9 ± 4.5 26.0 ± 1.8
ECP(λ=100.0) 85.7 ± 1.8 14.8 ± 2.8 96.4 ± 1.0 91.8 ± 4.3 25.8 ± 1.9
ECP(λ=1000.0) 86.0 ± 1.9 15.0 ± 3.0 85.0 ± 0.3 88.7 ± 2.1 26.7 ± 3.4
LS(α=0.01) 83.7 ± 2.5 17.2 ± 4.1 91.9 ± 0.9 85.8 ± 5.4 28.2 ± 2.9
LS(α=0.05) 85.1 ± 1.4 13.6 ± 2.3 80.8 ± 0.9 84.3 ± 5.7 25.4 ± 2.2
LS(α=0.1) 85.0 ± 2.1 11.1 ± 3.4 70.3 ± 0.6 85.1 ± 3.6 27.0 ± 2.2
SVLS(σ=1) 84.5 ± 1.9 14.0 ± 2.6 92.4 ± 1.0 91.8 ± 2.3 22.9 ± 1.8
SVLS(σ=2) 85.0 ± 1.8 12.9 ± 3.1 92.4 ± 0.9 91.4 ± 3.0 22.1 ± 1.4
SVLS(σ=3) 85.0 ± 1.6 13.1 ± 2.7 92.1 ± 0.9 91.2 ± 2.5 21.9 ± 1.4
MbLS(λ = 0.1,m=10) 84.8 ± 1.4 17.5 ± 5.1 95.7 ± 1.1 91.2 ± 4.1 31.1 ± 1.7
MbLS(λ = 0.1,m=8) 83.8 ± 1.3 16.0 ± 2.2 93.9 ± 0.9 90.5 ± 3.5 27.9 ± 2.1
MbLS(λ = 0.1,m=5) 84.3 ± 1.6 15.5 ± 2.8 90.4 ± 0.8 90.1 ± 5.6 28.2 ± 2.2
MbLS(λ = 0.1,m=3) 84.2 ± 2.1 12.8 ± 3.3 70.8 ± 0.4 82.1 ± 3.5 28.8 ± 5.6

MbLS(λ = 1.0,m=10) 83.7 ± 1.2 17.4 ± 4.4 96.0 ± 1.0 91.2 ± 3.9 30.5 ± 1.5
MbLS(λ = 10.0,m=10) 83.9 ± 1.5 17.8 ± 4.1 95.0 ± 1.2 90.8 ± 3.6 30.9 ± 1.6
TTA 85.6 ± 1.7 14.5 ± 3.1 96.3 ± 0.9 92.5 ± 4.0 27.2 ± 1.6
Bayes 85.7 ± 2.3 10.7 ± 3.0 93.2 ± 1.8 95.3 ± 1.9 30.3 ± 2.9
Bayes + 100AvU 86.1 ± 3.0 11.5 ± 3.8 94.9 ± 2.1 95.9 ± 2.0 31.5 ± 3.5
Bayes + 1000AvU 85.8 ± 2.8 12.0 ± 3.9 95.5 ± 1.9 96.3 ± 2.4 32.0 ± 3.3
Bayes + 10000AvU 86.0 ± 2.4 10.9 ± 3.0 96.1 ± 1.7 93.1 ± 2.1 29.3 ± 3.1
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Table 8: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate ID dataset. The experiment indicated
as bold is the one with the best performance. * indicates hyperparameters chosen by the
validation dataset.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 84.1 ± 5.6 12.9 ± 6.0 96.1 ± 3.4 92.5 ± 5.7 28.0 ± 3.7
Det + 100AvU 83.7 ± 6.7 16.6 ± 7.2 95.7 ± 3.3 91.6 ± 6.2 27.2 ± 2.9
Det + 1000AvU* 83.7 ± 6.8 16.9 ± 8.1 95.9 ± 3.8 92.1 ± 6.8 28.2 ± 3.4
Det + 10000AvU 83.4 ± 6.4 18.1 ± 7.9 96.1 ± 3.7 90.7 ± 5.6 26.1 ± 3.4
Focal (γ=1)* 81.1 ± 15.4 10.2 ± 5.0 90.3 ± 0.3 93.2 ± 5.5 29.3 ± 3.4
Focal (γ=2) 83.1 ± 6.2 10.4 ± 6.8 81.6 ± 2.5 92.9 ± 5.3 30.1 ± 3.7
Focal (γ=3) 82.3 ± 7.2 8.0 ± 6.4 58.7 ± 1.2 92.5 ± 5.4 31.8 ± 3.5
ECP (λ=0.1) 84.1 ± 5.4 16.5 ± 7.0 96.1 ± 3.4 92.3 ± 6.0 27.6 ± 3.9
ECP (λ=1.0) 84.1 ± 5.5 16.4 ± 7.0 96.1 ± 3.3 92.3 ± 6.0 27.8 ± 4.3
ECP (λ=10.0)* 84.0 ± 5.5 16.7 ± 7.1 96.1 ± 3.4 92.1 ± 6.0 27.6 ± 4.3
ECP (λ=100.0) 84.0 ± 5.5 16.6 ± 7.0 96.0 ± 3.0 92.1 ± 6.0 27.6 ± 4.1
ECP (λ=1000.0) 84.1 ± 5.7 16.6 ± 7.0 86.1 ± 3.2 92.2 ± 5.9 27.5 ± 4.3
LS (α=0.01) 82.5 ± 8.3 18.0 ± 9.4 91.3 ± 3.9 86.2 ± 7.9 27.0 ± 3.8
LS (α=0.05)* 83.4 ± 7.2 15.1 ± 8.6 80.4 ± 2.9 83.2 ± 7.8 25.1 ± 3.1
LS (α=0.1) 84.1 ± 5.6 11.6 ± 7.0 70.1 ± 1.8 84.7 ± 6.2 26.9 ± 3.3
SVLS (σ=1) 83.4 ± 7.1 14.7 ± 8.8 92.0 ± 3.7 90.9 ± 7.4 22.9 ± 2.9
SVLS (σ=2)* 83.5 ± 6.7 14.0 ± 8.1 91.9 ± 4.1 90.5 ± 7.9 21.7 ± 2.6
SVLS(σ=3) 83.2 ± 8.1 14.3 ± 9.7 91.5 ± 3.9 91.0 ± 6.8 23.1 ± 3.1
MbLS (λ = 1.0,m=3) 83.2 ± 6.3 13.3 ± 7.8 70.6 ± 1.7 82.2 ± 6.3 27.7 ± 3.4
MbLS (λ = 1.0,m=5) 82.8 ± 6.6 16.7 ± 8.0 89.9 ± 3.2 90.5 ± 7.2 27.2 ± 4.4
MbLS (λ = 1.0,m=8) 83.5 ± 5.8 17.1 ± 7.0 95.3 ± 3.6 93.0 ± 5.2 27.8 ± 4.1
MbLS (λ = 1.0,m=10) 84.2 ± 5.3 18.1 ± 6.1 95.5 ± 3.3 91.7 ± 6.1 26.5 ± 3.5

MbLS(λ = 1.0,m=10)* 84.2 ± 4.9 17.9 ± 7.4 95.6 ± 2.9 92.2 ± 5.6 26.9 ± 3.6
MbLS(λ = 10.0,m=10) 83.9 ± 5.2 17.9 ± 8.0 95.1 ± 3.2 91.9 ± 5.9 26.2 ± 4.1
TTA 83.8 ± 5.8 16.4 ± 7.1 96.0 ± 3.5 92.7 ± 5.6 28.8 ± 3.9
Ensemble 84.5 ± 5.7 11.3 ± 6.5 95.2 ± 3.5 94.3 ± 4.3 30.0 ± 4.6
Bayes 84.0 ± 5.8 8.6 ± 4.7 92.1 ± 2.6 94.7 ± 3.1 29.1 ± 4.8
Bayes + 100AvU 84.1 ± 6.4 12.0 ± 6.2 94.4 ± 3.1 95.5 ± 2.9 28.9 ± 5.0
Bayes + 1000AvU* 84.9 ± 6.9 8.9 ± 6.0 94.5 ± 3.2 95.7 ± 3.2 30.5 ± 4.5
Bayes + 10000AvU 85.2 ± 5.9 11.0 ± 6.3 94.2 ± 3.6 95.9 ± 3.5 30.2 ± 4.0
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Table 9: Volumetric (DICE), calibrative (ECE) and uncertainty-error correspondence met-
rics (AvU-AUC, ROC-AUC, PRC-AUC) on prostate OOD dataset. The experiment indi-
cated as bold is the one with the best performance. * indicates hyperparameters chosen
by the validation dataset.

Experiment
DICE ↑
(x10−2)

ECE ↓
(x10−2)

AvU-AUC ↑
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC ↑
(x10−2)

Det 74.2 ± 12.6 15.6 ± 6.3 92.3 ± 5.4 87.9 ± 7.5 22.1 ± 6.2
Det + 100AvU 74.2 ± 13.3 23.6 ± 11.2 93.0 ± 4.2 87.1 ± 6.2 22.2 ± 5.7
Det + 1000AvU* 74.5 ± 13.0 27.6 ± 14.3 92.2 ± 5.7 88.2 ± 7.6 22.0 ± 7.1
Det + 10000AvU 72.7 ± 15.1 27.6 ± 14.3 92.4 ± 5.2 82.3 ± 9.4 19.6 ± 6.2
Focal(γ=1)* 71.2 ± 17.4 12.1 ± 5.8 85.4 ± 6.1 89.0 ± 7.1 24.3 ± 6.7
Focal(γ=2) 76.7 ± 10.8 12.8 ± 8.2 72.0 ± 9.3 87.2 ± 7.6 22.4 ± 6.4
Focal(γ=3) 73.2 ± 13.7 11.6 ± 7.7 49.7 ± 9.4 87.1 ± 8.5 27.0 ± 7.2
ECP(λ=0.1) 74.6 ± 12.5 22.8 ± 10.5 92.1 ± 5.5 87.6 ± 7.6 21.3 ± 6.6
ECP(λ=1.0) 73.9 ± 13.1 23.2 ± 10.7 91.9 ± 5.6 87.2 ± 7.2 21.2 ± 6.4
ECP(λ=10.0)* 74.8 ± 12.5 22.3 ± 10.2 91.6 ± 6.3 87.2 ± 8.1 20.6 ± 7.0
ECP(λ=100.0) 74.9 ± 12.3 22.7 ± 10.5 92.1 ± 5.5 87.7 ± 8.0 21.5 ± 7.2
ECP(λ=1000.0) 74.6 ± 12.5 22.7 ± 10.3 92.2 ± 5.6 87.6 ± 7.7 21.5 ± 6.7
LS(α=0.01) 71.6 ± 15.1 24.6 ± 11.6 87.9 ± 5.3 84.3 ± 7.5 22.7 ± 6.2
LS(α=0.05)* 74.5 ± 13.0 21.7 ± 11.5 77.2 ± 4.6 79.5 ± 8.9 19.1 ± 7.2
LS(α=0.1) 75.2 ± 12.2 18.1 ± 10.1 67.4 ± 3.8 79.0 ± 8.4 19.9 ± 6.4
SVLS(σ=1) 74.9 ± 11.7 19.7 ± 9.1 88.5 ± 5.5 87.2 ± 7.4 18.7 ± 5.1
SVLS(σ=2)* 76.9 ± 11.5 17.9 ± 9.3 88.3 ± 5.2 87.2 ± 7.2 16.4 ± 5.2
SVLS(σ=3) 74.3 ± 13.5 21.4 ± 12.6 88.4 ± 5.1 86.3 ± 8.2 19.4 ± 5.0
MbLS(λ = 0.1, m=10) 72.3 ± 15.9 20.9 ± 7.9 91.4 ± 5.7 87.9 ± 6.9 22.2 ± 6.7
MbLS(λ = 0.1, m=8) 74.1 ± 13.5 20.7 ± 8.7 88.3 ± 8.2 85.0 ± 10.4 18.8 ± 8.8
MbLS(λ = 0.1, m=5) 74.7 ± 13.3 22.0 ± 11.3 86.9 ± 5.0 87.1 ± 7.9 22.0 ± 6.4
MbLS(λ = 0.1, m=3) 74.0 ± 13.3 20.5 ± 11.7 68.6 ± 2.9 78.0 ± 7.2 21.5 ± 6.7

MbLS(λ = 1.0, m=10)* 73.6 ± 12.5 19.9 ± 7.4 91.8 ± 3.4 86.5 ± 7.2 21.8 ± 5.6
MbLS(λ = 10.0, m=10) 72.1 ± 16.1 20.2 ± 6.7 91.4 ± 5.5 86.5 ± 9.0 22.2 ± 6.7
TTA 74.0 ± 12.8 23.7 ± 11.4 92.8 ± 4.8 88.6 ± 7.4 24.9 ± 5.8
Ensemble 76.3 ± 12.2 9.7 ± 5.0 89.9 ± 6.6 91.6 ± 5.2 28.4 ± 5.7
Bayes 70.6 ± 16.6 11.8 ± 7.2 86.2 ± 6.0 89.1 ± 7.4 25.7 ± 5.1
Bayes + 100AvU 72.1 ± 14.4 20.0 ± 11.8 91.0 ± 3.8 92.7 ± 4.0 30.2 ± 6.5
Bayes + 1000AvU* 76.3 ± 12.6 11.4 ± 6.7 89.5 ± 6.2 90.6 ± 6.9 26.2 ± 7.4
Bayes + 10000AvU 76.6 ± 12.7 17.1 ± 10.1 88.6 ± 6.5 90.4 ± 6.3 23.3 ± 7.4
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D. Visual Results

Visual results in Figure 2 and Figure 3 show pairs of consecutive CT/MR slices to better
understand the 3D nature of the output uncertainty across all models. We show examples
with both high and low DICE to investigate the presence and absence of uncertainty in
different regions of the model prediction.

D.1 Head-And-Neck CT

The first two rows of Figure 2a and Figure 2b show the mandible (i.e. lower jaw bone) with
only the Bayes+AvU model having overall low uncertainty in accurate regions and high
uncertainty in (or close to) inaccurate regions.

In the next set of rows for head-and-necks CTs, we observe the parotid gland, a salivary
organ, with (Figure 2a - Case 2) and without (Figure 2b - Case 2, Case 3) a dental scattering
issue. In both cases, while the Det model shows low uncertainty, the baseline Bayes model
shows high uncertainty in accurate regions. Usage of the AvU loss lowers uncertainty in
these regions, while still exhibiting uncertainty in the erroneous regions, for e.g. the medial
(i.e. internal) portion of the organ in Figure 2a (Case 2).

Moving on to our last case, we see the submandibular gland, another salivary gland
in Figure 2a (Case 3). The Ensemble, Focal, SVLS and MBLS models all display high
uncertainty in the core of the organ, which are also accurately predicted. On the other
hand, the AvU loss minimizes the uncertainty and shows uncertainty in the erroneous
region on the second slice.

D.2 Prostate MR

For the prostate datasets, we see two cases with high DICE in Figure 3a (Case 1) and
Figure 3b (Case 2) where the use of the AvU loss reduces uncertainty for the baseline Bayes
model.

We also see cases with low DICE in Figure 3a (Case 2) and Figure 3b (Case 1). Due
to their low DICE all models display high uncertainty, but the Bayes+AvU model shows
high overlap between its uncertain and erroneous regions. The same is also observed in
Figure 3b (Case 3).

Finally, in Figure 3a (Case 3), we do not see any clear benefit of using the AvU loss on
the Bayes model.
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E. BayesH model

Table 10: Volumetric (DICE ) , calibrative (ECE ) and uncertainty-error correspondence
metrics (ROC-AUC, PRC-AUC) for different Bayesian models. We evaluate head-and-neck
(H&N) CT and Prostate MR test datasets which are either in-distribution (ID) or out-
of-distribution (OOD). The arrows in the table header indicate whether a metric should
be high (↑) or low (↓). Here, † and bold are used to indicate a statistical significance
and improved results upon comparing a Bayesian model and its AvU-loss version, while
underlined numbers indicate the best value for a metric across a dataset.

Test
Dataset

Model
DICE ↑
(x10−2)

ECE ↓
(x10−2)

ROC-AUC ↑
(x10−2)

PRC-AUC↑
(x10−2)

ID
————
H&N CT
(RTOG)

Det 84.2 ± 2.7 9.0 ± 2.1 73.0 ± 5.7 21.0 ± 4.8
Ensemble 85.0 ± 2.6 8.6 ± 2.1 78.6 ± 4.7 25.7 ± 6.8

Bayes 83.9 ± 2.6 8.6 ± 2.1 74.1 ± 5.4 22.1 ± 3.5
Bayes+AvU 83.6 ± 2.5 7.6 ± 2.5† 76.1 ± 5.6† 25.1 ± 5.3†

BayesH 83.6 ± 2.9 9.2 ± 2.6 70.4 ± 7.0 20.1 ± 3.8
BayesH+AvU 84.1 ± 2.7 8.4 ± 2.4† 74.1 ± 5.4† 21.3 ± 4.6†

OOD
————
H&N CT
(STRSeg)

Det 78.1 ± 4.6 12.9 ± 2.6 62.2 ± 4.5 24.1 ± 3.7
Ensemble 78.6 ± 5.2 10.6 ± 2.4 64.7 ± 4.9 28.2 ± 5.1

Bayes 75.0 ± 9.9 12.4 ± 4.0 64.8 ± 5.0 27.7 ± 5.8
Bayes+AvU 76.3 ± 7.6† 12.1 ± 3.7 65.8 ± 5.0† 30.1 ± 6.5†

BayesH 77.5 ± 6.6 12.6 ± 3.3 61.1 ± 4.1 23.5 ± 4.7
BayesH+AvU 78.8 ± 5.1† 12.1 ± 3.2 64.8 ± 3.8† 23.8 ± 4.0†

ID
————
Prostate

MR
(PrMedDec)

Det 84.1 ± 5.6 12.9 ± 6.0 92.5 ± 5.7 28.0 ± 3.7
Ensemble 84.5 ± 5.7 11.3 ± 6.5 94.3 ± 4.3 30.0 ± 4.6

Bayes 84.0 ± 5.8 8.6 ± 4.7 94.7 ± 3.1 29.1 ± 4.8
Bayes+AvU 84.9 ± 6.9 8.9 ± 6.0 95.7 ± 3.2† 30.5 ± 4.5†

BayesH 82.3 ± 5.2 9.3 ± 4.3 93.6 ± 2.9 28.4 ± 4.2
BayesH+AvU 84.5 ± 6.3† 9.4 ± 6.5 94.9 ± 3.1† 30.1 ± 4.9†

OOD
————
Prostate

MR
(PR12)

Det 74.2 ± 12.6 15.6 ± 6.3 87.9 ± 7.5 22.1 ± 6.2
Ensemble 76.3 ± 12.2 9.7 ± 5.0 91.6 ± 5.2 28.4 ± 5.7

Bayes 70.6 ± 16.6 11.8 ± 7.2 89.1 ± 7.4 25.7 ± 5.1
Bayes+AvU 76.3 ± 12.6† 11.4 ± 6.7† 90.6 ± 6.9† 26.2 ± 7.4†

BayesH 71.3 ± 14.4 12.1 ± 6.7 88.9 ± 6.3 25.1 ± 4.9
BayesH+AvU 74.1 ± 13.8† 11.9 ± 6.2† 89.9 ± 6.2† 25.9 ± 5.4†
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