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Abstract

Clinically deployed deep learning-based segmentation models are known to fail on data
outside of their training distributions. While clinicians review the segmentations, these
models tend to perform well in most instances, which could exacerbate automation bias.
Therefore, detecting out-of-distribution images at inference is critical to warn the clinicians
that the model likely failed. This work applied the Mahalanobis distance (MD) post hoc to
the bottleneck features of four Swin UNETR and nnU-net models that segmented the liver
on T1-weighted magnetic resonance imaging and computed tomography. By reducing the
dimensions of the bottleneck features with either principal component analysis or uniform
manifold approximation and projection, images the models failed on were detected with
high performance and minimal computational load. In addition, this work explored a
non-parametric alternative to the MD, a k-th nearest neighbors distance (KNN). KNN
drastically improved scalability and performance over MD when both were applied to raw
and average-pooled bottleneck features. Our code is available at https://github.com/

mckellwoodland/dimen_reduce_mahal.
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Dimensionality Reduction and Nearest Neighbors for Improved OOD Detection

1. Introduction

Liver malignancy is one of the leading causes of cancer death worldwide (Ferlay et al., 2021),
with mortality rates increasing more rapidly than all other cancers within the United States
(Ryerson et al., 2016). Radiotherapy is a non-invasive treatment for advanced liver cancer
that leverages ionizing radiation to treat tumors (Chen et al., 2020). Precise delineation
of treatment targets and surrounding anatomical structures is critical to the success of ra-
diotherapy. Manual segmentation of these structures is time-intensive (Multi-Institutional,
2011), leading to delays that have been correlated with lower survival rates (Chen et al.,
2008) and incompatibility with techniques that require frequent imaging to account for
anatomical changes (Sheng, 2020), such as magnetic resonance imaging (MRI)-guided adap-
tive radiotherapy (Otazo et al., 2021). In addition, manual segmentation is subject to human
variability and inconsistencies (Nelms et al., 2012), which can lead to a lower quality of ra-
diotherapy (Saarnak et al., 2000). These limitations have prompted expansive research into
automated segmentation methods.

Deep learning (DL) algorithms constitute the current state-of-the-art for medical imag-
ing segmentation, with research spanning many anatomical regions and imaging modalities
(Cardenas et al., 2019). However, DL models struggle to generalize to information that was
not present while the model was being trained (Zech et al., 2018). This problem is exac-
erbated in the medical field, where collecting large-scale, annotated, and diverse training
datasets is challenging due to the cost of labeling, rare cases, and patient privacy. Even
models with high performance during external validation may fail when presented with
novel information after clinical deployment. This can be demonstrated by the work of An-
derson et al. (2021). On test data, 96% of their DL-based liver segmentations were deemed
clinically acceptable, with most of their segmentations being preferred over manual segmen-
tations. The two images the model performed poorly on contained information not present
during training – namely, the presence of ascites and a stent.

Automated segmentations are typically manually evaluated and corrected, if need be,
by a clinician before they are used in patient treatment. The main concern with human
evaluation is automation bias, where physicians may become too reliant on model output.
To protect against automation bias, it is critical to warn clinicians of potential segmentation
model failure. Identifying model inputs that will lead to poor model performance is referred
to as out-of-distribution (OOD) detection (Yang et al., 2024). This study focuses on post-
hoc OOD detection or methods that can be applied after model training in order to develop
warning systems for models already in clinical deployment.

Mahalanobis distance (MD) is a commonly used post-hoc OOD detection method that
computes the distance between a test image and a Gaussian distribution fitted to training
images (Lee et al., 2018). Given the inherent high dimensionality of images, the distance is
typically applied to features extracted from the network being analyzed. MD has achieved
state-of-the-art performance in natural imaging when applied directly to classifier features
(Fort et al., 2021). However, features from medical imaging segmentation models are an
order of magnitude larger than classifier features, necessitating further dimensionality reduc-
tion to ensure computational feasibility. While average pooling has been used conventionally
to reduce feature dimensionality (Lee et al., 2018; González et al., 2021), no prior studies
have examined the best way to prepare features for the MD calculation. Other open areas
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of research in regards to the application of MD to medical imaging segmentation models
include the validity of the Gaussian assumption, which features from the model should
be utilized (González et al., 2022), how to combine features best if multiple features are
utilized, and how to utilize MD with multi-class segmentation networks.

We aim to improve the performance and scalability of feature-based OOD detection in
medical imaging segmentation. Our main contributions are two-fold. First, we propose
using principal component analysis (PCA) and uniform manifold approximation and pro-
jection (UMAP) to prepare features for the MD calculation. We demonstrate that these
methods outperform average pooling across four liver segmentation models. Second, we
propose using a k-th nearest neighbor (KNN) distance (Sun et al., 2021) as a distribution-
agnostic replacement for MD for medical imaging segmentation models. Our results show
a drastic improvement of KNN over MD on raw and average pooled features, questioning
the validity of the Gaussian assumption for segmentation model features.

This work was first published in Lecture Notes of Computer Science volume 14291,
pages 147–156 by Springer Nature (Woodland et al., 2023). It was extended to include
validation of the dimensionality reduction techniques for three additional liver segmenta-
tion models (including extensions to computed tomography and the nnU-net architecture).
Furthermore, the extension includes a novel analysis of the KNN distance as a replacement
for MD. Finally, the extension provides greater context into how MD and KNN fit into the
larger OOD detection field by comparing their performance to standard methods.

2. Related Works

Traditional OOD detection aims to identify and reject model input whose true label deviates
semantically from the label distribution observed during the model’s training phase (Yang
et al., 2024). Our work follows an alternative definition of OOD detection common in many
safety-critical applications: identifying and rejecting model input that falls outside the
model’s generalization capacity (Pleiss et al., 2019; Yang et al., 2024). Distribution in this
context refers to a theoretical statistical distribution where data drawn from it is within
the scope of the model under consideration. A comprehensive review of OOD detection
approaches was recently compiled by Yang et al. (2024). Our review focuses on feature-
and output-based OOD detection methods that can be applied post hoc to segmentation
models and training-based uncertainty estimation approaches.

Lee et al. (2018) utilized density estimation for OOD detection by calculating the MD
between test features and class-conditional Gaussian distributions fit to training features.
Fort et al. (2021) achieved state-of-the-art OOD detection performance on standard vision
benchmarks by applying the MD to features extracted from large-scale, pre-trained vision
transformers. González et al. (2021) applied the MD to medical imaging segmentation
architectures by fitting a Gaussian distribution to the bottleneck features of an nnU-Net
architecture (Isensee et al., 2020). Sun et al. (2022) replaced MD with a k-th nearest
neighbor distance to relax the Gaussian assumption on the feature space. Ghosal et al.
(2024) proposed Subspace Nearest Neighbor (SNN), a k-th nearest neighbor approach that
reduces the dimensionality of the calculation by masking out irrelevant features. Karimi
and Gholipour (2023) found that the Euclidean distance between the spectral features of a
test image and its nearest neighbor in the training dataset achieved the best OOD detection
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performance on medical imaging segmentation tasks. Sastry and Oore (2020) measured the
deviation of test images from training images by applying high-order Gram matrices to all
neural network layers. Our work builds upon past research by improving the performance
of MD through dimensionality reduction and comparing MD to KNN in a medical imaging
feature space.

Hendrycks and Gimpel (2017) proposed Maximum Softmax Probability (MSP) as an
OOD detection baseline, where OOD samples were identified by their prediction probabili-
ties. The intuition behind this approach is that models should express more confidence on
ID samples than on OOD samples. However, in practice, neural networks tend to express
high confidence, even on OOD samples (Nguyen et al., 2015). Guo et al. (2017) calibrated
model confidence, or aligned prediction probabilities with true correctness likelihoods, by
scaling model logits with a single parameter (temperature scaling). Liang et al. (2018)
utilized temperature scaling and small input perturbations to improve the performance of
MSP (ODIN). Liu et al. (2020) furthered performance by replacing the softmax function
with an energy function. Sun et al. (2021) outperformed previous methods by truncating
hidden activations (ReAct). In this work, we compare MD and KNN to MSP, temperature
scaling, and energy scoring.

OOD detection can also be performed using prediction uncertainties. While Bayesian
neural networks provide probability distributions over weights, they are intractable for un-
certainty estimation as they require significant modifications to neural network architectures
and are computationally prohibitive. MC Dropout, which computes prediction uncertainties
by combining multiple stochastic passes through a network at inference, was proposed by
Gal and Ghahramani (2016) as a Bayesian approximation to Gaussian processes. Gal et al.
(2017) further introduced concrete dropout, which improved uncertainty calibration by al-
lowing for automated tuning of the dropout probability. Teye et al. (2018) approximated
Bayesian inference with batch normalization. Lakshminarayanan et al. (2017) took a fre-
quentist approach by ensembling neural networks to improve predictive uncertainty. While
ensembling is computationally expensive, it performs well in medical imaging segmentation
literature (Jungo et al., 2020; Mehrtash et al., 2020; Adams and Elhabian, 2023). To reduce
the computational complexity of ensembling, Wen et al. (2020) proposed BatchEnsemble,
which enables weight sharing. In this work, we compare MD and KNN to MC Dropout and
ensembling.

3. Methods

3.1 Segmentation

We used six liver segmentation models (Table 1) that were based on six datasets (Table 2)
for OOD detection analysis. The first model was the Swin UNETR (Tang et al., 2022) from
Woodland et al. (2023) (hereafter called MRI UNETR). This model was trained on 337
T1-weighted liver MRI exams from the Duke Liver (DLDS) (Macdonald et al., 2020, 2023),
Abdominal Multi-Organ Segmentation (AMOS) (Ji, 2022; Ji et al., 2022), and Combined
Healthy Abdominal Organ Segmentation (CHAOS) (Kavur et al., 2019, 2020, 2021) datasets
(collectively called MRITr) and tested on 27 T1-weighted liver MRIs from The University
of Texas MD Anderson Cancer Center (called MRITe). All MD Anderson images were
retrospectively acquired under an internal review board (IRB)-approved protocol.
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Table 1: Description of the segmentation models.
Name Train Test Description
MRI UNETR MRITr MRITe UNETR from Woodland et al. (2023)

MRI Dropout MRITr MRITe
UNETR with dropout enabled and predictions
combined

MRI Ensemble MRITr MRITe Ensemble of 5 UNETRs
MRI+ UNETR MRI+Tr MRI+Te UNETR from Patel et al. (2024)
MRI+ nnU-net MRI+Tr MRI+Te nnU-net from Patel et al. (2024)
CT nnU-net CTTr CTTe nnU-net from MD Anderson

The next two models were created to enable comparison of MC Dropout and ensembling
to MD and KNN. The second model, called MRI Dropout, was a Swin UNETR trained on
MRITr with a 20% dropout rate and tested on MRITe. Enabling dropout added dropout
layers into many architecture components, including after the positional embedding, the
window-based multi-head self-attention module, and the multi-layer perceptron. The seg-
mentation map for this model was generated by averaging the predictions obtained from
enabling dropout during inference and conducting five forward passes per image. The third
model, called MRI Ensemble, was an ensemble of five Swin UNETRs trained on MRITr. The
predictions from each of these five models were averaged to generate a final segmentation
map.

Table 2: Description of the datasets.
Name Description

MRITr 337 T1-weighted abdominal MRIs from DLDS, AMOS, and CHAOS datasets

MRITe 27 T1-weighted abdominal MRIs from MD Anderson

MRI+Tr
371 T1-weighted abdominal MRIs from MD Anderson and curated DLDS,
AMOS, CHAOS, ATLAS datasets

MRI+Te 352 T1-weighted abdominal MRIs from Houston Methodist

CTTr 2,840 abdominal CTs from MD Anderson

CTTe 248 abdominal CTs from MD Anderson and BTCV challenge

The encoders of MRI UNETR, MRI Dropout, and MRI Ensemble models were pre-
trained using self-distilled masked imaging (SMIT) (Jiang et al., 2022) with 3,610 unlabeled
head and neck computed tomography scans (CTs) from the Beyond the Cranial Vault
(BTCV) Segmentation Challenge dataset (Landman et al., 2015). The official Swin UNETR
codebase, built on top of the Medical Open Network for AI (MONAI) (Consortium, 2021),
was utilized for the pre-trained weights and training. Models were trained with default
parameters for 1,000 epochs with the default batch size of 1. Each model was trained on a
single node of a Kubernetes cluster containing eight A100 graphic processing units (GPUs)
with 40 gigabytes (GB) of memory. A total of 100 GB of memory was requested from
the cluster. Final model weights were selected according to the weights with the highest
validation Dice similarity coefficient (DSC).

The rest of the liver segmentation models were previously trained at MD Anderson
and were utilized for post-hoc OOD detection analysis. The fourth model, called MRI+
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UNETR, builds upon MRI UNETR by expanding and curating the training and testing
datasets. MRI+ UNETR was trained on 48 scans from the AMOS dataset, 172 scans from
the DLDS dataset, 38 scans from the CHAOS dataset, 44 scans from the Tumor and Liver
Automatic Segmentation (ATLAS) dataset (Quinton et al., 2023), and 69 scans from MD
Anderson, for a total of 371 T1-weighted liver MRIs (collectively named MRI+Tr). 352
scans from 71 patients with hepatocellular carcinoma collected from Houston Methodist
Hospital (called MRI+Te) were used for evaluation. Inclusion criteria for MRI+Tr and
MRI+Te necessitated the entire liver to be visible, no prior liver surgery, and sufficient
image quality to ensure the boundary of the liver was identifiable without pre-existing
contours. The fifth model, named MRI+ nnU-net, was an nnU-net trained and tested on
MRITr and MRI+Te that was included to enable a comparison between the nnU-net and
Swin UNETR architectures. For more information on the MRI+ models, please refer to
Patel et al. (2024).

The final model, named CT nnU-net, was an nnU-net trained on 2,840 internally ob-
tained abdominal computed tomography (CT) scans (CTTr) and tested on 248 CT scans
(CTTe). It was included to expand our analysis to computed tomography. The training
scans varied in the presence of and phase of contrast (portal-venous and arterial phases),
states of liver disease and histology, presence of artifacts (including ablation needles, stents,
and post-resection clips), and therapy stage (planning, intra-operative, and post-operative).
30 of the test scans came from the BTCV challenge (Landman et al., 2015), while the rest
were acquired internally from MD Anderson. Images from an ongoing liver ablation clinical
trial1 and Anderson et al. (2021) were used in both the training and testing phases of the
segmentation model.

Segmentation performance was evaluated with DSC, maximum Hausdorff distance (HD),
and Normalized Surface Dice (NSD) with a threshold of 2 millimeters. One-sided paired
t-tests were conducted with a significance level of α=.05 to determine the significance of
performance improvements.

3.2 OOD Detection

To evaluate the detection of images that a segmentation model will perform poorly on, each
model’s test data was split into in-distribution (ID) and OOD categories based on that
specific model’s performance. An image was labeled ID for a model if the image had an
associated DSC of at least 95%. Accordingly, an image was labeled OOD if it had a DSC
under 95%. If there were not at least two ID images, the threshold was lowered to 80%.
While we consider 80% DSC to be acceptable for clinical deployment, we prefer a 95% DSC
as these contours are unlikely to require any editing in the clinical process. In practice, the
threshold should be determined by the individual use case. For robustness, experiments were
computed for 95%, 80%, and median value thresholds. Furthermore, DSCs were plotted
against OOD scores to visually demonstrate how the results would change if the threshold
changed.

Performance was measured with the area under the receiver operating characteristic
curve (AUROC), the area under the precision-recall curve (AUPRC), the false positive rate
at a 90% true positive rate (FPR90), and the amount of time in seconds it took to compute

1. https://www.clinicaltrials.gov/study/NCT04083378

2011

https://www.clinicaltrials.gov/study/NCT04083378


Woodland et al.

the OOD scores, with OOD considered the positive class. Averages and standard deviations
(SDs) were reported across five OOD score calculations, with each score being calculated on
the entire test dataset with a different NumPy random seed. t-tests were performed with a
significance level α = 0.10 to determine the significance of configuration improvements. All
calculations were performed on a node of a Kubernetes cluster with 16 central processing
units (CPUs) and a requested 256 megabytes of memory, with a 256 GB limit.

3.2.1 Mahalanobis distance

The Mahalanobis distance D measures the distance between a point x and a distribu-
tion with mean µ and covariance matrix Σ, D2 = (x − µ)TΣ−1(x − µ) (Mahalanobis,
1936). Lee et al. (2018) first proposed using the MD for OOD detection to calculate the
distance between test images embedded by a classifier and a Gaussian distribution fit to
class-conditional embeddings of the training images. Similarly, González et al. (2021) used
the MD for OOD detection in segmentation networks by extracting embeddings from the
encoder of an nnU-Net. As distances in high dimensions are subject to the curse of di-
mensionality, both sets of authors decreased the dimensionality of the embeddings through
average pooling. Lee et al. (2018) suggested pooling the features such that the height and
width dimensions of the features become singular. González et al. (2021) pooled features
with a kernel size and stride of 2 until the feature dimensionality fell below 10,000.

The MD was calculated on features extracted from the bottlenecks of the liver segmenta-
tion models. For the UNETRs, the projected features x were saved from the Trans Unetr

class. For the nnU-nets, the features skips were saved from the PlainConvUNet class
for each sliding window and subsequently concatenated. As the nnU-nets automatically
cropped their inputs, the size of the bottleneck feature dimension representing the number
of concatenated sliding windows could not be standardized. To account for this, average
pooling was applied across the concatenated embeddings such that the size of the dimen-
sion representing the number of concatenated windows was made singular. The size of the
bottleneck features for the UNETR models was standardized by resizing model inputs to
(256, 128, 128) prior to feature extraction. After extraction, all features were flattened to
prepare them for distance calculations. Note that nnU-net uses instance normalization in
the encoding process, whereas UNETR uses layer normalization.

Gaussian distributions were fitted on the raw training embeddings. For each test em-
bedding, the MD between the embedding and the corresponding Gaussian distribution was
calculated and used as the OOD score. Covariance matrices were estimated empirically
with maximum likelihood estimation.

3.2.2 K-Nearest Neighbors

When Lee et al. (2018) introduced MD for OOD detection, the authors showed that the
posterior distribution of a softmax classifier can be modeled by a generative classifier defined
by Gaussian Discriminant Analysis, thereby demonstrating that classifier embeddings can
be Gaussian-distributed. However, this does not guarantee the embeddings are Gaussian-
distributed, as demonstrated by classifier embeddings failing normality tests (Sun et al.,
2022). Additionally, this analysis has not been extended to segmentation networks.
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Sun et al. (2022) first proposed using a k-th nearest neighbor distance as a non-parametric
alternative to the MD. In their work, KNN improved overall performance over MD across
five OOD detection benchmark datasets, though performance improvements were dataset-
dependent. In this work, we propose KNN for medical imaging segmentation networks.
We define the k-th nearest neighbor distance to be the Euclidean distance between a test
embedding f(x) and its k-th nearest training embedding f(zk) where f is a trained U-Net
encoder

||f(x)− f(zk)||2.

This k-th nearest neighbor distance serves as the OOD score. A hyperparameter search was
performed over k such that k ∈ {2, 4, 8, 16, 32, 64, 128, 256}. KNN was performed on the
features that were extracted for MD.

3.2.3 Dimensionality Reduction

As distances in extremely high-dimensional spaces often lose meaning (Aggarwal et al.,
2001), experiments were performed on the effect of decreasing the size of the bottleneck
features using average pooling, PCA, UMAP (McInnes et al., 2020), and t-distributed
stochastic neighbor embeddings (t-SNE) (Van der Maaten and Hinton, 2008). For aver-
age pooling, features were pooled in both 2- and 3-dimensions with kernel size k and stride
s for (k, s) ∈ {(2, 1), (2, 2), (3, 1), (3, 2), (4, 1)}. For PCA, each embedding was flattened and
standardized. For both PCA and UMAP, a hyperparameter search was performed over the
number of components n such that n ∈ {2, 4, 8, 16, 32, 64, 128, 256}. The PyTorch, scikit-
learn, and UMAP Python packages were used for the dimensionality reduction (McInnes
et al., 2020). Outside of the hyperparameter searches mentioned above, default parameters
were used. A visual representation of integrating dimensionality reduction with MD and
KNN is available in Figure 1.

The efficacy of PCA, t-SNE, and UMAP for OOD detection was examined qualitatively
by plotting the features from the MRI UNETR reduced to two dimensions. Features gener-
ated by the MRITr and MRITe datasets (split into ID and OOD by 95% DSC) were plotted
and subsequently compared. Additionally, MRITe embeddings were plotted by DSC, and
MRITr embeddings were plotted by source (DLDS, AMOS, and CHAOS).

3.2.4 Comparison Methods

We used MSP (Hendrycks and Gimpel, 2017) as a post-hoc detection baseline. In addition,
we evaluated two proposed improvements to MSP: temperature scaling (Guo et al., 2017)
and energy scoring (Liu et al., 2020). To provide non-post-hoc detection baselines, MD and
KNN were further compared with MC Dropout (Gal and Ghahramani, 2016) and ensembling
(Lakshminarayanan et al., 2017) on the MRITe dataset.

To undertake the OOD detection task using MSP, the logits pertaining to the foreground
and background classes were stacked, followed by a softmax. The maximum probability for
each voxel was then calculated across the foreground and background classes. The average
of these maximum probabilities for the entire image was then computed. We subtracted
this average from 1 to get the final OOD score for MSP. For temperature scaling, logits
were divided evenly by T ∈ {2, 3, 4, 5, 10, 100, 1000} before the softmax was applied. For
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Figure 1: MD and KNN pipelines with dimensionality-reduced features using either PCA,
t-SNE, UMAP, or average pooling (Pool). The encoder is a trained encoder from
a U-Net architecture. k is the k-th nearest neighbor.

energy scoring, the OOD score was calculated as

E(x; f) = −T ∗ log
k∑

i=1

fi(x)

T

for image x, i-th logit fi, and scaling parameter T ∈ {1, 2, 3, 4, 5, 10, 100, 1000}. For MC
Dropout, voxel-wise standard deviations were calculated across the predictions from the five
forward passes of MRI Dropout with dropout enabled. The average of these standard devia-
tions was used as the MC Dropout OOD score. Similarly, the average of voxel-wise standard
deviations calculated across the predictions from the five members of MRI Ensemble was
used as the ensembling OOD score.

To further evaluate the performance of the OOD detection methods on the poor segmen-
tation performance task, Pearson correlation coefficients (PCCs) were computed between
the OOD scores of the best-performing configuration of each OOD detection method and
the DSC, HD, and NSD segmentation metrics with a significance level of α = .10. These
relationships were further explored qualitatively by plotting the OOD scores against DSCs.

4. Results

4.1 Segmentation

The segmentation performance of the MRI Dropout and MRI Ensemble models improved
on that of the MRI UNETR by averaging the predictions (paired t-tests for HD, p = .013
Dropout, p = .020 Ensemble; Table 3). Thresholds for OOD detection were set at 95%
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DSC for all models except the MRI+ UNETR. This model only produced one DSC over
95%, so the threshold was lowered to 80%. 13 images determined to be OOD were shared
across the MRI UNETR, MRI Dropout, and MRI Ensemble models. MRI+ UNETR and
MRI+ nnU-net performed similarly on MRI+Te, with MRI+ UNETR achieving a lower HD
and MRI+ nnU-net achieving a higher NSD (paired t-tests, p < .001 all tests). Figure 2
displays visual examples of the segmentation quality of the MRI UNETR.

Table 3: Average (±SD) segmentation performances. # OOD refers to the number of
test images determined to be OOD. Arrows denote whether higher or lower is
better. Bold highlights the best performance per test dataset, with underlined
performances denoting statistical significance.

Model DSC (±SD) ↑ HD (±SD) ↓ NSD (±SD) ↑ # OOD

MRI UNETR 0.89 (±0.11) 34.38 (±25.67) 0.72 (±0.22) 14

MRI Dropout 0.91 (±0.09) 23.30 (±24.63) 0.75 (±0.20) 14

MRI Ensemble 0.91 (±0.10) 24.23 (±24.94) 0.76 (±0.20) 13

MRI+ UNETR 0.90 (±0.04) 18.10 (±10.66) 0.65 (±0.10) 7

MRI+ nnU-net 0.90 (±0.03) 31.27 (±25.06) 0.78 (±0.08) 349

CT nnU-net 0.97 (±0.01) 23.10 (±26.34) 0.96 (±0.05) 22

Figure 2: Segmentations with high (top) and low (bottom) DSCs along with their corre-
sponding MDs, calculated in conjunction with PCA with two components. Pink
is the ground truth segmentation; teal is the MRI UNETR segmentation.
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4.2 OOD Detection

4.2.1 Mahalanobis Distance

The calculation of the MD on raw bottleneck features was computationally intractable
(Table 4). For the MRI UNETR, the inverse of the covariance matrix took ∼2.6 hours to
compute. Once computed, it took 75.5 GB to store the inverse. Once the matrix was in
memory, each MD calculation took ∼2 seconds. The average (± SD) MD on MRITr was
1203.02 (± 24.66); whereas, the average (± SD) MD on MRITe was 1.47×109 (±8.66× 108)
and 1.52× 109(±9.10× 108) for ID and OOD images, respectively.

Table 4: MD-based OOD detection results. Results are based on a 95% DSC threshold for
all models except the MRI+ UNETR, where the threshold was set at 80% DSC.
Only the best-performing configuration by AUROC is reported for each dimen-
sionality reduction technique (Reduct): no reduction (None), PCA(np) with np

components, t-SNE, UMAP(nu) with nu components, and nd-dimensional average
pooling with kernel size k and stride s, PoolndD(k,s). Seconds is the amount of
time it took to calculate the test distances. The results are averages (±SD) across
5 runs. Arrows denote whether higher or lower is better. Bold highlights the best
performance per model, with underlined performances denoting statistical signif-
icance. Appendix A.1 contains the results with varied thresholds, and Appendix
B.1 contains the full hyperparameter searches.

Model Reduct AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 0.48 (±0.00) 0.61 (±0.00) 1.00 (±0.00) 9,354.34 (±48.53)

PCA(256) 0.93 (±0.00) 0.94 (±0.00) 0.23 (±0.00) 2.82 (±0.14)

t-SNE 0.70 (±0.08) 0.72 (±0.12) 0.71 (±0.14) 4.70 (±0.28)

UMAP(2) 0.77 (±0.08) 0.79 (±0.11) 0.57 (±0.08) 10.44 (±0.22)

Pool2D(3,2) 0.82 (±0.00) 0.86 (±0.00) 0.46 (±0.00) 15.32 (±8.92)

MRI+
UNETR

None 0.53 (±0.00) 0.03 (±0.00) 0.78 (±0.00) 10,070.78 (±141.69)

PCA(32) 0.85 (±0.01) 0.13 (±0.00) 0.34 (±0.02) 1.86 (±0.32)

t-SNE 0.66 (±0.00) 0.03 (±0.00) 0.45 (±0.00) 5.77 (±0.06)

UMAP(2) 0.68 (±0.07) 0.05 (±0.01) 0.49 (±0.06) 21.29 (±0.43)

Pool2D(4,1) 0.64 (±0.00) 0.04 (±0.00) 0.64 (±0.00) 16.08 (±13.41)

MRI+
nnU-net

None 0.69 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 4,125.96 (±13.12)

PCA(8) 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.12 (±0.04)

t-SNE 0.70 (±0.18) 1.00 (±0.00) 0.87 (±0.16) 4.72 (±0.11)

UMAP(16) 0.82 (±0.08) 1.00 (±0.00) 0.67 (±0.03) 19.07 (±0.96)

Pool2D(2,1) 0.85 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 1,579.73 (±52.41)

CT
nnU-net

None 0.41 (±0.00) 0.10 (±0.00) 0.91 (±0.00) 5,856.21 (±63.04)

PCA(32) 0.56 (±0.00) 0.17 (±0.00) 0.92 (±0.00) 8.17 (±0.23)

t-SNE 0.59 (±0.04) 0.20 (±0.02) 0.80 (±0.02) 13.75 (±0.35)

UMAP(128) 0.68 (±0.03) 0.22 (±0.01) 0.74 (±0.09) 288.42 (±25.99)

Pool2D(2,2) 0.59 (±0.00) 0.13 (±0.00) 0.84 (±0.00) 163.84 (±19.54)
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4.2.2 K-Nearest Neighbors

While the MD calculation was not tractable on raw features, the KNN calculation was (Table
5). The calculation took ∼0.02 seconds per image for the MRI data and ∼0.08 seconds per
image for the liver CT data. In addition to being more scalable, KNN improved the AUROC
over the MD applied to raw features for all models (t-tests, p < .001 all tests).

Table 5: KNN-based OOD detection of poor performance results. Results are based on a
95% DSC threshold for all models except the MRI+ UNETR, where the thresh-
old was set at 80% DSC. Only the best-performing configuration by AUROC
is reported for each dimensionality reduction technique (Reduct): no reduction
(None), PCA(np) with np components, t-SNE, UMAP(nu) with nu components,
and nd-dimensional average pooling with kernel size k and stride s, PoolndD(k,s).
Seconds is the amount of time it took to calculate the test distances. The results
are averages (±SD) across 5 runs. Arrows denote whether higher or lower is bet-
ter. Bold highlights the best performance, with underlined performances denoting
statistical significance. Appendix A.2 contains the results with varied thresholds,
and Appendix B.2 contains the link to the full hyperparameter searches.

Model Reduct K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 256 0.87 (±0.00) 0.88 (±0.00) 0.31 (±0.00) 0.78 (±0.00)

PCA(2) 256 0.90 (±0.00) 0.92 (±0.00) 0.31 (±0.00) 0.95 (±0.05)

t-SNE 256 0.77 (±0.05) 0.83 (±0.04) 0.74 (±0.06) 4.48 (±0.07)

UMAP(32) 256 0.83 (±0.05) 0.85 (±0.04) 0.51 (±0.08) 6.70 (±0.15)

Pool2D(3,1) 256 0.94 (±0.00) 0.95 (±0.00) 0.23 (±0.00) 0.90 (±0.00)

MRI+
UNETR

None 256 0.76 (±0.00) 0.25 (±0.00) 0.59 (±0.00) 9.44 (±0.16)

PCA(32) 64 0.84 (±0.01) 0.17 (±0.02) 0.40 (±0.01) 1.57 (±0.06)

t-SNE 64 0.70 (±0.00) 0.04 (±0.00) 0.37 (±0.00) 6.49 (±0.19)

UMAP(4) 64 0.78 (±0.05) 0.09 (±0.06) 0.42 (±0.07) 15.70 (±0.45)

Pool3D(2,2) 256 0.87 (±0.00) 0.33 (±0.00) 0.43 (±0.00) 11.21 (±7.66)

MRI+
nnU-net

None 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 6.78 (±0.10)

PCA(8) 256 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.16 (±0.07)

t-SNE 128 0.67 (±0.08) 1.00 (±0.00) 1.00 (±0.00) 4.76 (±0.11)

UMAP(2) 2 0.96 (±0.04) 1.00 (±0.00) 0.13 (±0.16) 14.91 (±2.08)

Pool2D(2,2) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.74 (±0.04)

CT
nnU-net

None 8 0.52 (±0.00) 0.13 (±0.00) 0.94 (±0.00) 37.64 (±0.67)

PCA(8) 4 0.55 (±0.00) 0.15 (±0.00) 0.97 (±0.00) 4.94 (±0.04)

t-SNE 256 0.46 (±0.00) 0.19 (±0.00) 0.95 (±0.01) 12.28 (±0.09)

UMAP(4) 256 0.65 (±0.01) 0.24 (±0.05) 0.88 (±0.02) 199.93 (±1.96)

Pool3D(2,2) 4 0.54 (±0.00) 0.14 (±0.00) 0.96 (±0.00) 81.96 (±26.79)

4.2.3 Dimensionality Reduction

Paired with MD, all dimensionality reduction techniques resulted in improvements in the
AUROC (t-tests, p = .003 UMAP/MRI+ UNETR, p < .001 all other tests; Table 4). On
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the MRI models, PCA achieved the best performance, outperforming average pooling by
0.14 (±0.06)% AUROC and 535.11 (±903.70) seconds. For CT nnU-net, UMAP achieved
the best AUROC, outperforming average pooling by 0.09. Figure 2 displays MDs computed
on PCA-reduced features, along with the corresponding segmentations. In this figure, higher
MDs were associated with poor segmentation performance.

Paired with KNN, PCA, and average pooling resulted in AUROC improvements for
all models (t-tests, p < .001 all tests; Table 5). Similar to MD, KNN on UMAP-reduced
features achieved the highest AUROC for the CT nnU-net (t-tests, p < .001 all tests). In
contrast to MD, KNN applied to average pooled features achieved the highest AUROCs
for the MRI models (t-tests, p = .001 UMAP/MRI UNETR, p = .007 UMAP/MRI+
UNETR, p < .001 all other tests except UMAP/MRI+ nnU-net). On the MRI models,
KNN outperformed MD when applied to average pooled features by 0.16 (±0.05) AUROC
and 532.76 (±739.81) seconds. Overall, KNN applied to average-pooled features slightly
outperformed MD on PCA-reduced features by 0.02 (±0.00) AUROC for the MRI models
(t-tests, p = .003 MRI+ UNETR, p < .001 all other tests).

Figure 3 visualizes the 2D embeddings produced by PCA, t-SNE, and UMAP for the
MRI UNETR. In addition, covariance ellipses generated by the training distribution are
plotted, representing one and two standard deviations away from the mean training embed-
ding. PCA mapped most ID test images within one standard deviation of the mean training
embedding (the image not within the first deviation contained a motion artifact). On the
other hand, most OOD test images were mapped outside of the first standard deviation.
When test embeddings were visualized by their DSC, the three reduction techniques mapped
the images with the lowest DSCs farthest from the mean training embedding. Moreover, all
three techniques clustered training embeddings by source. The 26 images from the AMOS
dataset mapped outside the second standard deviation by all techniques were deemed to be
of low perceptual resolution by a physician. These were the only images from the AMOS
dataset whose axial dimension was larger than the sagittal dimension. Sample images from
both AMOS clusters are shown in Figure 5 in Appendix C.

4.2.4 Comparison Methods

On MRITe, MSP, MC Dropout, and ensembling outperformed MD and KNN (t-tests on
AUROC, p < .001 all tests), with MC Dropout perfectly differentiating between ID and
OOD categories (Table 6). Similarly, MSP outperformed MD and KNN on CTTe (t-tests
on AUROC, p = .036 MD, p < .001 KNN). In contrast, MD and KNN outperformed the
output-based methods on MRI+Te (t-tests on AUROC, p < .001 all tests).

Although originally intended to improve the performance of MSP, both temperature
scaling and energy scoring performed worse than MSP on the MRITe and CTTe datasets
(t-tests on AUROC, p < .001 all tests). Overall, MSP achieved the highest AUROCs for
the MRI UNETR and CT nnU-net models (t-tests, p = .036 MD/CT nnU-net, p < .001 all
other tests), and KNN achieved the highest AUROCs for the MRI+ UNETR and nnU-net
models (t-tests, p = .003 MD/MRI+ UNETR, p < .001 all other tests).

The OOD scores from KNN, MSP, and temperature scaling were significantly correlated
with DSC across all models (Table 7). MD was significantly correlated with DSC for all the
MRI models. Energy scoring was significantly correlated with DSC for only the nnU-nets.
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Figure 3: Visualization of 2D projections of MRI UNETR embeddings. (Top Row) PCA
projections. (Middle Row) t-SNE projections. (Bottom Row) UMAP projections.
(Left Column) Test projections split into ID and OOD by 95% DSC. (Middle
Column) Test projections by DSC. (Right Column) Projections for the training
data by source. The gray ellipses are the covariance ellipses (one and two standard
deviations) for the training distribution.

MC Dropout and ensembling were significantly correlated with all segmentation metrics
on MRITe, notably achieving PCCs of 0.96 and 0.97 with HD (p < .001 all correlations).
Considering only post-hoc detection methods, MSP achieved the best correlations with DSC
for the MRI UNETR and CT nnU-net models (-0.77 and -0.28) and the best correlations
with HD and NSD for MRI+ nnU-net (0.30 and -0.31; t-tests, p < .001 all tests). MD and
temperature scaling achieved the best correlations with DSC for the MRI+ UNETR and
MRI+ nnU-net models, respectively (-0.14 and -0.31; t-tests, p < .001 all tests).
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Table 6: OOD detection results for the best-performing configurations of the comparison
methods: MSP, temperature scaling (TS) and energy scoring (Energy) with tem-
perature T , MC Dropout (MCD), and ensembling (Ensemble). The results are
averages (±SD) across 5 runs. Arrows denote whether a higher or lower value is
better. Bold highlights the best performance per model, with underlined perfor-
mances denoting statistical significance. Appendix A.3 contains the results with
varied thresholds, and Appendix B.3 contains the full hyperparameter searches.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

MSP - 0.96 (±0.00) 0.97 (±0.00) 0.00 (±0.00) 8.78 (±0.11)

TS 2 0.90 (±0.00) 0.93 (±0.00) 0.15 (±0.00) 9.25 (±0.11)

Energy 3 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.08 (±0.14)

MRI
Dropout

MCD - 1.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 14.56 (±0.20)

MRI
Ensemble

Ensemble - 0.96 (±0.00) 0.96 (±0.00) 0.14 (±0.00) 14.02 (±0.05)

MRI+
UNETR

MSP - 0.57 (±0.00) 0.09 (±0.00) 0.59 (±0.00) 58.70 (±0.48)

TS 2 0.47 (±0.00) 0.05 (±0.00) 0.78 (±0.00) 60.57 (±0.31)

Energy 1000 0.61 (±0.00) 0.03 (±0.00) 0.71 (±0.00) 35.86 (±0.41)

MRI+
nnU-net

MSP - 0.45 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,114.34 (±0.51)

TS 10 0.55 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,252.78 (±0.73)

Energy 10 0.61 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.88 (±0.47)

CT
nnU-net

MSP - 0.72 (±0.00) 0.29 (±0.00) 0.57 (±0.00) 568.51 (±0.37)

TS 3 0.68 (±0.00) 0.26 (±0.00) 0.69 (±0.00) 699.07 (±0.37)

Energy 2 0.67 (±0.00) 0.26 (±0.00) 0.75 (±0.00) 105.66 (±0.60)

Figure 4 plots OOD scores against DSCs. By moving the horizontal line vertically, one
can visualize how the OOD detection performance would change if the DSC threshold were
changed. MSP, ensembling, and MC Dropout visually demonstrated the strongest negative
linear relationship between OOD scores and DSC. KNN and MD assigned noticeably higher
OOD scores to six images with a wide range of DSCs. These images came from the same
patient who had a large tumor in the liver, resulting in missing liver segments (Figure 6,
Appendix D). The training-based methods assigned the noticeably highest OOD score to
a scan with an imaging artifact. Instead of providing the intended further separation of
softmax score distributions, temperature scaling and energy scoring visually pushed the
distributions closer together.

5. Discussion

Our work provides several key takeaways. First, MD is highly sensitive to the methodology
used to reduce the feature space. Past research reduced feature dimensionality with average
pooling with fixed parameters (Lee et al., 2018; González et al., 2021). Our work demon-
strates that this practice may not achieve the best results, considering average pooling was
outperformed by PCA for the MRI data and UMAP for the CT data. While PCA and
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Figure 4: OOD scores plotted against DSC for MRITe. Horizontal lines represent 95% DSC.
Vertical lines represent the 90% TPR.
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Table 7: Correlation results for the best-performing configuration of all methods: MD and
KNN with dimensionality-reduction techniques PCA(n) and UMAP(n) with n
components and nd-dimensional average pooling with kernel size k and stride s
PoolndD(k,s), MSP, temperature scaling (TS) and energy scoring (Energy) with
temperature T , MC Dropout (MCD), and ensembling (Ensemble). ∗ represents
that each of the five correlation coefficients that were averaged over were statisti-
cally significant. Arrows denote whether a higher or lower value is better. Bold
highlights the best performance per model, with underlined performances denot-
ing statistical significance.

Model Method Config PCC [DSC] ↓ PCC [HD] ↑ PCC [NSD] ↓

MRI
UNETR

MD PCA(256) -0.74* (±0.00) 0.09 (±0.00) -0.76* (±0.00)

KNN Pool2D(3,1)
K=256

-0.72* (±0.00) 0.05 (±0.00) -0.73* (±0.00)

MSP - -0.77* (±0.00) 0.53* (±0.00) -0.70* (±0.00)

TS T=2 -0.69* (±0.00) 0.58* (±0.00) -0.64* (±0.00)

Energy T=3 -0.22 (±0.00) 0.20 (±0.00) -0.24 (±0.00)

MRI
Dropout

MCD - -0.86* (±0.00) 0.96* (±0.00) -0.67* (±0.00)

MRI
Ensemble

Ensemble - -0.82* (±0.00) 0.97* (±0.00) -0.63* (±0.00)

MRI+
UNETR

MD PCA(32) -0.14* (±0.00) 0.05 (±0.00) 0.02 (±0.00)

KNN Pool3D(2,2)
K=256

-0.13* (±0.00) 0.03 (±0.00) -0.03 (±0.00)

MSP - -0.13* (±0.00) -0.01 (±0.00) 0.10 (±0.00)

TS T=2 -0.13* (±0.00) -0.02 (±0.00) 0.12 (±0.00)

Energy T=1000 -0.04 (±0.00) 0.09 (±0.00) -0.03 (±0.00)

MRI+
nnU-net

MD PCA(8) -0.20* (±0.00) 0.11* (±0.00) 0.12* (±0.00)

KNN Pool2D(2,2)
K=256

-0.27* (±0.00) 0.22* (±0.00) 0.14* (±0.00)

MSP - -0.13* (±0.00) 0.30* (±0.00) -0.31* (±0.00)

TS T=10 -0.31* (±0.00) 0.20* (±0.00) 0.04 (±0.00)

Energy T=10 -0.16* (±0.00) -0.02 (±0.00) 0.07 (±0.00)

CT
nnU-net

MD UMAP(128) -0.11 (±0.03) 0.05 (±0.04) -0.10* (±0.02)

KNN UMAP(4)
K=256

-0.21* (±0.01) 0.23* (±0.01) -0.16* (±0.01)

MSP - -0.28* (±0.00) 0.23* (±0.00) -0.29* (±0.00)

TS T=3 -0.22* (±0.00) 0.20* (±0.00) -0.25* (±0.00)

Energy T=2 -0.20* (±0.00) 0.19* (±0.00) -0.23* (±0.00)

UMAP demonstrated promise, the best dimensionality reduction technique and parameter
configuration is likely dataset and architecture-dependent. For example, while PCA and
UMAP with only a few components performed well for liver segmentation, they may dis-
card information important to the segmentation of smaller anatomical structures such as
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tumors. Architecture components, such as automatic cropping on an image-by-image basis,
may also affect the applicability of a technique. Therefore, using a validation dataset to
choose a dimensionality reduction technique and configuration could improve downstream
OOD detection. Our findings align with those of Ghosal et al. (2024), whose work demon-
strates that a careful and methodological selection of a subspace of features can improve
feature-based OOD detection. A fundamental difference between our approach and that
of González et al. (2021) is that we define OOD cases based on model performance. This
difference could explain the decline in MD performance observed with average pooling in
our study.

Second, raw and reduced segmentation model features may not be Gaussian-distributed,
challenging the suitability of MD to all OOD detection tasks. This is especially true for
medical imaging models, as the limited number of training images can lead to less clearly
defined training distributions. Moreover, the Gaussian assumption of MD fails to account
for the potential multi-modality of medical imaging distributions arising from various fac-
tors such as differences across source datasets, acquisition parameters, contrast phases,
disease states, artifacts, and stages of therapy. In our work, a non-parametric approach,
KNN, outperformed MD on raw features across all segmentation models and thresholds. In
addition, MD outperformed KNN on average pooled features from the MRI segmentation
models across all thresholds. Furthermore, our visualization of 2D embeddings highlighted
significant gaps in the training distributions, with some training images positioned far from
the central modes of the distributions. Our findings corroborate those of Sun et al. (2022),
who demonstrated that parametric approaches are not always suitable for OOD detection.

Finally, the best OOD detection method for detecting poor segmentation performance
may be task-dependent. In González et al. (2021), MD outperformed MC Dropout and
MSP when applied to lung lesion segmentation. In González et al. (2022), MD and MSP
achieved perfect differentiation for hippocampus segmentation, outperforming MC Dropout.
For prostrate segmentation, on the other hand, MD and MC Dropout achieved perfect differ-
entiation, outperforming MSP. In our liver segmentation study, MC Dropout outperformed
MD, with MC Dropout achieving perfect differentiation. This suggests that MC Dropout
may be better suited for tasks involving large and easily identifiable anatomical structures.
Furthermore, in our liver segmentation study, MSP marginally outperformed MD on the
test datasets drawn from MD Anderson, whereas MD substantially outperformed MSP on
the test dataset from Houston Methodist. Moreover, on the MD Anderson test datasets,
temperature scaling and energy scoring performed worse than MSP, a finding shared with
González et al. (2021, 2022). However, energy scoring achieved the best performance of the
output-based methods on the test dataset from Houston Methodist.

This work has several limitations. First, privacy must be considered when utilizing
KNN, as the embeddings from all training images must be stored. Second, this work solely
focused on liver segmentation. While this focus is advantageous for liver cancer research,
the presented results may not extend to other anatomical structures. Third, the OOD
detection thresholds relied on DSC, whereas surface-based metrics may better estimate
whether a contour is clinically acceptable (Baroudi et al., 2023). Fourth, this work defined
OOD detection based on model performance. Although this definition is important to
consider for patient safety, the presented results may not extend to other OOD definitions.
In addition, this definition caused the proportion of OOD test images to vary across models,
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limiting a direct comparison of OOD detection performance across these models. Finally,
due to the automatic cropping nature of the nnU-nets utilized, all nnU-net embeddings had
to be average pooled across the dimension representing the number of patches. Therefore,
the nnU-net results are not a true representation of the distances applied to raw, PCA-,
t-SNE-, and UMAP-reduced features.

Our work has several potential applications. First, a warning that the model likely failed
could be added to automated segmentations with OOD scores above a specified threshold
in a clinical setting. This would protect against automation bias, which would, in turn,
protect patients whose scans have uncommon attributes. Ensembling and MC Dropout
may be well suited for a liver segmentation task if the computational resources are available
due to their superior segmentation and OOD detection performance. Second, detecting
poor segmentation performance in retrospective studies where a large corpus of data is to
be segmented. As reviewing all autosegmentations would be infeasible, human evaluators
would only need to review the autosegmentations associated with large OOD scores. In this
application, computational costs may outweigh performance. Accordingly, KNN may be
advantageous to utilize. Third, the dimensionality techniques could provide a visualization
tool for segmentation model creators to analyze how their model views their data. For
example, using PCA with two components highlighted the images of low perceptual quality
in the AMOS dataset. Lastly, this work could be used to diversify institutional training
datasets by determining which images have the most utility to label. The OOD scores of
scans in unlabeled institutional databases would elucidate the most challenging cases and
the cases that differ the most from the original training dataset.

This research provides several avenues for future work. One of the biggest barriers
to developing post-hoc OOD detection pipelines for medical imaging segmentation models
is the number of choices one must consider when building their framework. Considering
only feature-based methods for a moment, one must determine if they are going to use
the features directly (Lee et al., 2018), a spectral analysis of the features (Karimi and
Gholipour, 2023), or pairwise feature correlations with Gram matrices (Sastry and Oore,
2020). Then there are questions of which features should be used González et al. (2022);
Anthony and Kamnitsas (2023), and if multiple are used, how to best aggregate them
(Lee et al., 2018). Once the features are chosen, one must determine how to properly
reduce them to satisfy computational requirements and optimize performance (Woodland
et al., 2023; Ghosal et al., 2024). At this point, one should consider if parametric or non-
parametric distances are the most appropriate for the reduced features (Sun et al., 2022).
These considerations open up a plethora of avenues for future work. Research regarding
each of these factors is of benefit to the field, in addition to large-scale application studies
that demonstrate superior configurations for specific scenarios. However, what the field
is most lacking is the collaborative infrastructure to automate these decision processes for
specific models and validation datasets. In reality, the best configurations are most likely
task-dependent, and most hospital systems developing segmentation models do not have
the resources to perform such exhaustive searches.
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6. Conclusion

In this work, MD was applied to dimensionality-reduced bottleneck features of a Swin UN-
ETR trained for liver segmentation on T1-weighted MRIs. The resulting pipeline was able
to embed entire 3D medical images into several components. These components were not
only sufficient to cluster datasets drawn from different institutions but also could detect
scans that the model performed poorly on with high performance and minimal computa-
tional cost (less than one second on CPUs). We validated our methods on previously trained
liver segmentation models and found that either PCA or UMAP improved performance over
average pooling for all models. Furthermore, we applied KNN to all models post hoc and
found that it drastically outperformed the MD on raw and average pooled features: on a
nnU-net trained on liver MRIs, it increased the AUROC to 96% from 69% and decreased the
amount of time required to compute OOD scores for 352 MRIs from an hour to 7 seconds.
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Camila González, Karol Gotkowski, Andreas Bucher, Ricarda Fischbach, Isabel Kaltenborn,
and Anirban Mukhopadhyay. Detecting when pre-trained nnu-net models fail silently for
covid-19 lung lesion segmentation. In Marleen de Bruijne, Philippe C. Cattin, Stéphane
Cotin, Nicolas Padoy, Stefanie Speidel, Yefeng Zheng, and Caroline Essert, editors, MIC-
CAI 2021, pages 304–314, Cham, 2021. Springer International Publishing. ISBN 978-3-
030-87234-2. .
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Appendix A. OOD detection results split by threshold

A.1 Mahalanobis Distance

Table 8: MD-based OOD detection of poor performance results. ID is a DSC ≥ 95%. Only
the best-performing configuration by AUROC is reported for each dimensionality
reduction technique (Reduct): no reduction (None), PCA(np) with np components,
t-SNE, UMAP(nu) with nu components, and nd-dimensional average pooling with
kernel size k and stride s, PoolndD(k,s). Seconds is the amount of time it took to
calculate the test distances. The results are averages (±SD) across 5 runs. Arrows
denote whether higher or lower is better. Bold highlights the best performance
per model.

Model Reduct AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 0.48 (±0.00) 0.61 (±0.00) 1.00 (±0.00) 9,354.34 (±48.53)

PCA(256) 0.93 (±0.00) 0.94 (±0.00) 0.23 (±0.00) 2.82 (±0.14)

t-SNE 0.70 (±0.08) 0.72 (±0.12) 0.71 (±0.14) 4.70 (±0.28)

UMAP(2) 0.77 (±0.08) 0.79 (±0.11) 0.57 (±0.08) 10.44 (±0.22)

Pool2D(3,2) 0.82 (±0.00) 0.86 (±0.00) 0.46 (±0.00) 15.32 (±8.92)

MRI+
UNETR

None 0.46 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 9809.40 (±57.20)

PCA(16) 0.82 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.42 (±0.06)

t-SNE 0.92 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 5.75 (±0.16)

UMAP(16) 0.91 (±0.03) 1.00 (±0.00) 0.20 (±0.40) 16.69 (0.98)

Pool3D(3,1) 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 78.77 (±0.20)

MRI+
nnU-net

None 0.69 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 4,125.96 (±13.12)

PCA(8) 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.12 (±0.04)

t-SNE 0.70 (±0.18) 1.00 (±0.00) 0.87 (±0.16) 4.72 (±0.11)

UMAP(16) 0.82 (±0.08) 1.00 (±0.00) 0.67 (±0.03) 19.07 (±0.96)

Pool2D(2,1) 0.85 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 1,579.73 (±52.41)

CT
nnU-net

None 0.41 (±0.00) 0.10 (±0.00) 0.91 (±0.00) 5,856.21 (±63.04)

PCA(32) 0.56 (±0.00) 0.17 (±0.00) 0.92 (±0.00) 8.17 (±0.23)

t-SNE 0.59 (±0.04) 0.20 (±0.02) 0.80 (±0.02) 13.75 (±0.35)

UMAP(128) 0.68 (±0.03) 0.22 (±0.01) 0.74 (±0.09) 288.42 (±25.99)

Pool2D(2,2) 0.59 (±0.00) 0.13 (±0.00) 0.84 (±0.00) 163.84 (±19.54)
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Table 9: MD-based OOD detection of poor performance results. ID is a DSC ≥ 80%. Only
the best-performing configuration by AUROC is reported for each dimensionality
reduction technique (Reduct): no reduction (None), PCA(np) with np components,
t-SNE, UMAP(nu) with nu components, and nd-dimensional average pooling with
kernel size k and stride s, PoolndD(k,s). Seconds is the amount of time it took to
calculate the test distances. The results are averages (±SD) across 5 runs. Arrows
denote whether higher or lower is better. Bold highlights the best performance
per model.

Model Reduct AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 0.48 (±0.00) 0.21 (±0.00) 0.83 (±0.00) 9349.73 (±10.85)

PCA(128) 0.92 (±0.00) 0.68 (±0.00) 0.13 (±0.00) 1.95 (±0.12)

t-SNE 0.85 (±0.00) 0.49 (±0.00) 0.26 (±0.00) 4.35 (±0.13)

UMAP(8) 0.93 (±0.03) 0.73 (±0.07) 0.13 (±0.00) 5.61 (±0.14)

Pool3D(4,1) 0.87 (±0.00) 0.50 (±0.00) 0.22 (±0.00) 1.72 (±0.06)

MRI+
UNETR

None 0.53 (±0.00) 0.03 (±0.00) 0.78 (±0.00) 10,070.78 (±141.69)

PCA(32) 0.85 (±0.01) 0.13 (±0.00) 0.34 (±0.02) 1.86 (±0.32)

t-SNE 0.66 (±0.00) 0.03 (±0.00) 0.45 (±0.00) 5.77 (±0.06)

UMAP(2) 0.68 (±0.07) 0.05 (±0.01) 0.49 (±0.06) 21.29 (±0.43)

Pool2D(4,1) 0.64 (±0.00) 0.04 (±0.00) 0.64 (±0.00) 16.08 (±13.41)

MRI+
nnU-net

None 0.58 (±0.00) 0.03 (±0.00) 0.70 (±0.00) 4,100.82 (±4.00)

PCA(8) 0.74 (±0.00) 0.08 (±0.00) 0.52 (±0.00) 1.17 (±0.04)

t-SNE 0.35 (±0.00) 0.02 (±0.00) 0.90 (±0.00) 4.68 (±0.06)

UMAP(4) 0.78 (±0.00) 0.06 (±0.02) 0.45 (±0.07) 13.43 (±0.24)

Pool3D(2,2) 0.68 (±0.00) 0.30 (±0.00) 0.71 (±0.00) 6.99 (±0.18)

CT
nnU-net

None - - - -
PCA - - - -
t-SNE - - - -
UMAP - - - -
Pool - - - -
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Table 10: MD-based OOD detection of poor performance results. ID is a DSC ≥ the median
DSC. Only the best-performing configuration by AUROC is reported for each di-
mensionality reduction technique (Reduct): no reduction (None), PCA(np) with
np components, t-SNE, UMAP(nu) with nu components, and nd-dimensional
average pooling with kernel size k and stride s, PoolndD(k,s). Seconds is the
amount of time it took to calculate the test distances. The results are averages
(±SD) across 5 runs. Arrows denote whether higher or lower is better. Bold
highlights the best performance per model.

Model Reduct AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 0.48 (±0.00) 0.61 (±0.00) 1.00 (±0.00) 9,283.76 (±8.18)

PCA(256) 0.93 (±0.00) 0.94 (±0.00) 0.23 (±0.00) 2.93 (±0.14)

t-SNE 0.60 (±0.00) 0.57 (±0.00) 0.77 (±0.00) 4.42 (±0.09)

UMAP(8) 0.74 (±0.05) 0.83 (±0.04) 0.74 (±0.10) 5.79 (±0.22)

Pool2D(3,2) 0.82 (±0.00) 0.86 (±0.00) 0.46 (±0.00) 4.70 (±0.14)

MRI+
UNETR

None 0.50 (±0.00) 0.52 (±0.00) 0.90 (±0.00) 9,777.69 (±12.41)

PCA(32) 0.54 (±0.00) 0.58 (±0.00) 0.86 (±0.00) 1.66 (±0.15)

t-SNE 0.52 (±0.00) 0.54 (±0.00) 0.90 (±0.00) 5.73 (±0.16)

UMAP(32) 0.55 (±0.00) 0.55 (±0.01) 0.84 (±0.02) 17.01 (±0.57)

Pool2D(4,1) 0.57 (±0.00) 0.61 (±0.00) 0.84 (±0.00) 9.38 (±0.14)

MRI+
nnU-net

None 0.51 (±0.00) 0.51 (±0.00) 0.88 (±0.00) 4,091.49 (±5.61)

PCA(32) 0.62 (±0.00) 0.62 (±0.00) 0.80 (±0.00) 1.39 (±0.09)

t-SNE 0.59 (±0.00) 0.60 (±0.00) 0.82 (±0.00) 4.65 (±0.07)

UMAP(64) 0.58 (±0.02) 0.58 (±0.01) 0.86 (±0.03) 14.16 (±0.16)

Pool3D(2,2) 0.57 (±0.00) 0.58 (±0.00) 0.86 (±0.00) 6.86 (±0.11)

CT
nnU-net

None 0.49 (±0.00) 0.49 (±0.00) 0.90 (±0.00) 5,388.67 (±47.96)

PCA(2) 0.56 (±0.00) 0.56 (±0.00) 0.88 (±0.00) 4.79 (±0.06)

t-SNE 0.63 (±0.00) 0.66 (±0.00) 0.85 (±0.00) 12.09 (±0.17)

UMAP(32) 0.57 (±0.03) 0.58 (±0.03) 0.85 (±0.04) 199.15 (±1.56)

Pool2D(4,1) 0.57 (±0.00) 0.58 (±0.00) 0.85 (±0.00) 130.59 (±1.80)
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A.2 K-Nearest Neighbors

Table 11: KNN-based OOD detection of poor performance results. ID is a DSC ≥ 95%.
Only the best-performing configuration by AUROC is reported for each dimen-
sionality reduction technique (Reduct): no reduction (None), PCA(np) with np

components, t-SNE, UMAP(nu) with nu components, and nd-dimensional aver-
age pooling with kernel size k and stride s, PoolndD(k,s). Seconds is the amount
of time it took to calculate the test distances. The results are averages (±SD)
across 5 runs. Arrows denote whether higher or lower is better. Bold highlights
the best performance per model.

Model Reduction K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 256 0.87 (±0.00) 0.88 (±0.00) 0.31 (±0.00) 0.78 (±0.00)

PCA(2) 256 0.90 (±0.00) 0.92 (±0.00) 0.31 (±0.00) 0.95 (±0.00)

t-SNE 256 0.77 (±0.05) 0.83 (±0.04) 0.74 (±0.06) 4.48 (±0.07)

UMAP(32) 256 0.83 (±0.05) 0.85 (±0.04) 0.51 (±0.08) 6.70 (±0.15)

Pool2D(3,1) 256 0.94 (±0.00) 0.95 (±0.00) 0.23 (±0.00) 0.90 (±0.00)

MRI+
UNETR

None 32 0.86 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 9.27 (±0.15)

PCA(16) 8 0.88 (±0.02) 1.00 (±0.00) 0.40 (±0.49) 1.52 (±0.06)

t-SNE 256 0.94 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 5.67 (±0.08)

UMAP(2) 64 0.89 (±0.02) 1.00 (±0.00) 0.60 (±0.49) 16.47 (±0.28)

Pool2D(3,2) 4 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.30 (±0.03)

MRI+
nnU-net

None 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 6.78 (±0.10)

PCA(8) 256 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.16 (±0.07)

t-SNE 128 0.67 (±0.08) 1.00 (±0.00) 1.00 (±0.00) 4.76 (±0.11)

UMAP(2) 2 0.96 (±0.04) 1.00 (±0.00) 0.80 (±0.27) 14.18 (±0.55)

Pool2D(2,2) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.74 (±0.04)

CT
nnU-net

None 8 0.52 (±0.00) 0.13 (±0.00) 0.94 (±0.00) 37.64 (±0.67)

PCA(8) 4 0.55 (±0.00) 0.15 (±0.00) 0.97 (±0.00) 4.94 (±0.04)

t-SNE 256 0.46 (±0.00) 0.19 (±0.00) 0.95 (±0.01) 12.28 (±0.09)

UMAP(4) 256 0.65 (±0.01) 0.24 (±0.05) 0.88 (±0.02) 199.93 (±1.96)

Pool3D(2,2) 4 0.54 (±0.00) 0.14 (±0.00) 0.96 (±0.00) 81.96 (±26.79)
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Table 12: KNN-based OOD detection of poor performance results. ID is a DSC ≥ 80%.
Only the best-performing configuration by AUROC is reported for each dimen-
sionality reduction technique (Reduct): no reduction (None), PCA(np) with np

components, t-SNE, UMAP(nu) with nu components, and nd-dimensional aver-
age pooling with kernel size k and stride s, PoolndD(k,s). Seconds is the amount
of time it took to calculate the test distances. The results are averages (±SD)
across 5 runs. Arrows denote whether higher or lower is better. Bold highlights
the best performance per model.

Model Reduct K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 256 0.87 (±0.00) 0.62 (±0.00) 0.13 (±0.00) 0.79 (±0.02)

PCA(2) 128 0.92 (±0.00) 0.67 (±0.00) 0.13 (±0.00) 0.93 (±0.05)

t-SNE 128 0.83 (±0.09) 0.44 (±0.11) 0.31 (±0.17) 4.36 (±0.07)

UMAP(2) 256 0.90 (±0.05) 0.57 (±0.18) 0.16 (±0.08) 5.68 (±0.10)

Pool2D(3,2) 256 0.92 (±0.00) 0.69 (±0.00) 0.13 (±0.00) 0.84 (±0.08)

MRI+
UNETR

None 256 0.76 (±0.00) 0.25 (±0.00) 0.59 (±0.00) 9.44 (±0.16)

PCA(32) 64 0.84 (±0.01) 0.17 (±0.02) 0.40 (±0.01) 1.57 (±0.06)

t-SNE 64 0.70 (±0.00) 0.04 (±0.00) 0.37 (±0.00) 6.49 (±0.19)

UMAP(4) 64 0.78 (±0.05) 0.09 (±0.06) 0.42 (±0.07) 15.70 (±0.45)

Pool3D(2,2) 256 0.87 (±0.00) 0.33 (±0.00) 0.43 (±0.00) 11.21 (±7.66)

MRI+
nnU-net

None 256 0.72 (±0.00) 0.09 (±0.00) 0.67 (±0.00) 6.44 (±0.09)

PCA(8) 256 0.81 (±0.00) 0.06 (±0.00) 0.36 (±0.00) 1.12 (±0.07)

t-SNE 2 0.74 (±0.10) 0.05 (±0.02) 0.44 (±0.20) 4.80 (±0.12)

UMAP(128) 64 0.82 (±0.00) 0.06 (±0.01) 0.39 (±0.02) 14.61 (±0.25)

Pool3D(4,1) 64 0.76 (±0.00) 0.08 (±0.00) 0.34 (±0.00) 0.77 (±0.06)

CT
nnU-net

None - - - - -
PCA - - - - -
t-SNE - - - - -
UMAP - - - - -
Pool - - - - -
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Table 13: KNN-based OOD detection of poor performance results. ID is a DSC ≥ the
median DSC. Only the best-performing configuration by AUROC is reported
for each dimensionality reduction technique (Reduct): no reduction (None),
PCA(np) with np components, t-SNE, UMAP(nu) with nu components, and
nd-dimensional average pooling with kernel size k and stride s, PoolndD(k,s).
Seconds is the amount of time it took to calculate the test distances. The results
are averages (±SD) across 5 runs. Arrows denote whether higher or lower is
better. Bold highlights the best performance per model.

Model Reduct K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

None 256 0.87 (±0.00) 0.88 (±0.00) 0.31 (±0.00) 0.78 (±0.00)

PCA(2) 256 0.90 (±0.00) 0.92 (±0.00) 0.31 (±0.00) 0.98 (±0.08)

t-SNE 256 0.77 (±0.05) 0.83 (±0.04) 0.74 (±0.06) 4.37 (±0.11)

UMAP(128) 256 0.82 (±0.04) 0.86 (±0.04) 0.63 (±0.16) 6.61 (±0.43)

Pool2D(3,1) 256 0.94 (±0.00) 0.95 (±0.00) 0.23 (±0.00) 0.89 (±0.01)

MRI+
UNETR

None 32 0.86 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 9.01 (±0.07)

PCA(16) 8 0.88 (±0.02) 1.00 (±0.00) 0.40 (±0.49) 1.46 (±0.09)

t-SNE 256 0.94 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 5.67 (±0.04)

UMAP(2) 64 0.90 (±0.02) 1.00 (±0.00) 0.40 (±0.49) 16.75 (±0.26)

Pool2D(3,2) 4 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.29 (±0.01)

MRI+
nnU-net

None 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 6.76 (±0.00)

PCA(8) 256 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.12 (±0.04)

t-SNE 128 0.67 (±0.09) 1.00 (±0.00) 1.00 (±0.00) 4.73 (±0.11)

UMAP(2) 2 0.96 (±0.02) 1.00 (±0.00) 0.20 (±0.16) 14.82 (±1.60)

Pool2D(2,2) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.77 (±0.03)

CT
nnU-net

None 8 0.52 (±0.00) 0.13 (±0.00) 0.94 (±0.00) 37.15 (±0.28)

PCA(8) 4 0.55 (±0.00) 0.15 (±0.00) 0.97 (±0.00) 5.03 (±0.08)

t-SNE 256 0.46 (±0.00) 0.19 (±0.00) 0.95 (±0.01) 12.07 (±0.12)

UMAP(2) 256 0.66 (±0.01) 0.23 (±0.05) 0.88 (±0.02) 206.25 (±1.34)

Pool3D(2,1) 4 0.54 (±0.00) 0.14 (±0.00) 0.96 (±0.00) 23.84 (±0.15)
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A.3 Comparison Methods

Table 14: OOD detection results for the best-performing configurations of the comparison
methods: MSP, temperature scaling (TS) and energy scoring (Energy) with tem-
perature T , MC Dropout (MCD), and ensembling (Ensemble). ID is a DSC ≥
95%. Seconds is the amount of time it took to calculate the test distances. Only
the best-performing configuration by AUROC is reported for each method. The
results are averages (±SD) across 5 runs. Arrows denote whether a higher or
lower value is better. Bold highlights the best performance per model.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

MSP - 0.96 (±0.00) 0.97 (±0.00) 0.00 (±0.00) 8.78 (±0.11)

TS 2 0.90 (±0.00) 0.93 (±0.00) 0.15 (±0.00) 9.25 (±0.11)

Energy 3 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.08 (±0.14)

Dropout
UNETR

MCD - 1.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 14.56 (±0.20)

Ensemble
UNETR

Ensemble - 0.96 (±0.00) 0.96 (±0.00) 0.14 (±0.00) 14.02 (±0.05)

MRI+
UNETR

MSP - 0.91 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 59.18 (±0.46)

TS 2 0.93 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 60.57 (±0.43)

Energy 1 0.89 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 36.53 (±1.82)

MRI+
nnU-net

MSP - 0.45 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,114.34 (±0.51)

TS 10 0.55 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,252.78 (±0.73)

Energy 10 0.61 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.88 (±0.47)

CT
nnU-net

MSP - 0.72 (±0.00) 0.29 (±0.00) 0.57 (±0.00) 568.51 (±0.37)

TS 3 0.68 (±0.00) 0.26 (±0.00) 0.69 (±0.00) 699.07 (±0.37)

Energy 2 0.67 (±0.00) 0.26 (±0.00) 0.75 (±0.00) 105.66 (±0.60)
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Table 15: OOD detection results for the best-performing configurations of the comparison
methods: MSP, temperature scaling (TS) and energy scoring (Energy) with tem-
perature T , MC Dropout (MCD), and ensembling (Ensemble). ID is a DSC ≥
80%. Seconds is the amount of time it took to calculate the test distances. The
results are averages (±SD) across 5 runs. Arrows denote whether a higher or
lower value is better. Bold highlights the best performance per model.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

MSP - 0.92 (±0.00) 0.58 (±0.00) 0.09 (±0.00) 8.84 (±0.14)

TS 2 0.91 (±0.00) 0.54 (±0.00) 0.09 (±0.00) 9.10 (±0.14)

Energy 1000 0.72 (±0.00) 0.26 (±0.00) 0.35 (±0.00) 6.70 (±0.18)

MRI
Dropout

MCD - 1.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 14.70 (±0.23)

MRI
Ensemble

Ensemble - 0.96 (±0.00) 0.83 (±0.00) 0.08 (±0.00) 14.16 (±0.20)

MRI+
UNETR

MSP - 0.57 (±0.00) 0.09 (±0.00) 0.59 (±0.00) 58.70 (±0.48)

TS 2 0.47 (±0.00) 0.05 (±0.00) 0.78 (±0.00) 60.57 (±0.31)

Energy 1000 0.61 (±0.00) 0.03 (±0.00) 0.71 (±0.00) 35.86 (±0.41)

MRI+
nnU-net

MSP - 0.87 (±0.00) 0.10 (±0.00) 0.22 (±0.00) 1,115.75 (±0.60)

TS 3 0.92 (±0.00) 0.15 (±0.00) 0.14 (±0.00) 1,252.07 (±0.22)

Energy 1 0.68 (±0.00) 0.09 (±0.00) 0.75 (±0.00) 185.96 (±0.39)

CT
nnU-net

MSP - - - - -
TS - - - - -
Energy - - - - -
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Table 16: OOD detection results for the best-performing configurations of the comparison
methods: MSP, temperature scaling (TS) and energy scoring (Energy) with tem-
perature T , MC Dropout (MCD), and ensembling (Ensemble). ID is a DSC ≥
the median DSC. Seconds is the amount of time it took to calculate the test dis-
tances. The results are averages (±SD) across 5 runs. Arrows denote whether a
higher or lower value is better. Bold highlights the best performance per model.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

MSP - 0.96 (±0.00) 0.97 (±0.00) 0.00 (±0.00) 8.73 (±0.12)

TS 2 0.90 (±0.00) 0.93 (±0.00) 0.15 (±0.00) 9.14 (±0.05)

Energy 4 0.64 (±0.00) 0.56 (±0.00) 0.60 (±0.00) 6.95 (±0.26)

MRI
Dropout

MCD - 1.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 14.57 (±0.14)

MRI
Ensemble

Ensemble - 0.96 (±0.00) 0.96 (±0.00) 0.14 (±0.00) 13.93 (±0.09)

MRI+
UNETR

MSP - 0.60 (±0.00) 0.62 (±0.00) 0.85 (±0.00) 58.31 (±0.21)

TS 5 0.63 (±0.00) 0.65 (±0.00) 0.85 (±0.00) 60.77 (±0.29)

Energy 2 0.62 (±0.00) 0.63 (±0.00) 0.85 (±0.00) 42.34 (±0.26)

MRI+
nnU-net

MSP - 0.51 (±0.00) 0.56 (±0.00) 0.99 (±0.00) 1,114.55 (±0.17)

TS 5 0.64 (±0.00) 0.66 (±0.00) 0.85 (±0.00) 1,252.77 (±0.19)

Energy 1 0.63 (±0.00) 0.64 (±0.00) 0.78 (±0.00) 190.26 (±0.42)

CT
nnU-net

MSP - 0.67 (±0.00) 0.71 (±0.00) 0.91 (±0.00) 567.86 (±0.33)

TS 3 0.66 (±0.00) 0.70 (±0.00) 0.91 (±0.00) 699.59 (±0.24)

Energy 1 0.65 (±0.00) 0.70 (±0.00) 0.93 (±0.00) 100.77 (±0.84)
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Appendix B. Hyperparameter searches

B.1 Mahalanobis Distance

Table 17: MD hyperparameter searches for the MRI UNETR (95% threshold). Dimen-
sionality reduction techniques include PCA(np) with np components, UMAP(nu)
with nu components, and nd-dimensional average pooling with kernel size k and
stride s, PoolndD(k,s). Seconds is the amount of time it took to calculate the test
distances. The results are averages (±SD) across 5 runs. Arrows denote whether
higher or lower is better. Bold highlights the best performance per technique.

Experiment AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 0.90 (±0.00) 0.93 (±0.00) 0.38 (±0.00) 0.95 (±0.06)

PCA(4) 0.70 (±0.00) 0.66 (±0.00) 0.46 (±0.00) 1.02 (±0.04)

PCA(8) 0.73 (±0.00) 0.74 (±0.00) 0.54 (±0.00) 1.02 (±0.10)

PCA(16) 0.87 (±0.00) 0.87 (±0.00) 0.23 (±0.00) 1.13 (±0.11)

PCA(32) 0.85 (±0.01) 0.88 (±0.01) 0.34 (±0.08) 1.18 (±0.08)

PCA(64) 0.85 (±0.01) 0.87 (±0.02) 0.23 (±0.00) 1.31 (±0.18)

PCA(128) 0.91 (±0.00) 0.93 (±0.00) 0.23 (±0.00) 1.99 (±0.09)

PCA(256) 0.93 (±0.00) 0.94 (±0.00) 0.23 (±0.00) 2.82 (±0.14)

UMAP(2) 0.77 (±0.08) 0.79 (±0.11) 0.57 (±0.08) 10.44 (±0.22)

UMAP(4) 0.75 (±0.04) 0.80 (±0.07) 0.66 (±0.16) 10.63 (±0.39)

UMAP(8) 0.74 (±0.05) 0.82 (±0.03) 0.72 (±0.17) 10.57 (±0.16)

UMAP(16) 0.65 (±0.03) 0.77 (±0.02) 0.91 (±0.09) 10.76 (±0.29)

UMAP(32) 0.66 (±0.03) 0.77 (±0.02) 0.91 (±0.06) 10.64 (±0.38)

UMAP(64) 0.63 (±0.03) 0.75 (±0.03) 0.88 (±0.06) 10.76 (±0.33)

UMAP(128) 0.65 (±0.03) 0.77 (±0.01) 0.88 (±0.01) 10.99 (±0.45)

UMAP(256) 0.63 (±0.03) 0.76 (±0.02) 0.88 (±0.08) 11.17 (±0.28)

Pool2D(2,1) 0.71 (±0.00) 0.74 (±0.00) 0.54 (±0.00) 1,446.90 (±11.62)

Pool2D(2,2) 0.63 (±0.00) 0.69 (±0.00) 0.85 (±0.00) 187.00 (±10.68)

Pool2D(3,1) 0.72 (±0.00) 0.72 (±0.00) 0.54 (±0.00) 145.02 (±0.24)

Pool2D(3,2) 0.82 (±0.00) 0.86 (±0.00) 0.46 (±0.00) 15.32 (±8.92)

Pool2D(4,1) 0.73 (±0.00) 0.78 (±0.00) 0.77 (±0.00) 11.95 (±5.92)

Pool3D(2,1) 0.70 (±0.00) 0.78 (±0.00) 0.92 (±0.00) 1,109.29 (±12.88)

Pool3D(2,2) 0.60 (±0.00) 0.69 (±0.00) 0.77 (±0.00) 18.69 (±0.25)

Pool3D(3,1) 0.75 (±0.00) 0.82 (±0.00) 0.85 (±0.00) 74.33 (±15.52)

Pool3D(3,2) 0.54 (±0.00) 0.58 (±0.00) 0.85 (±0.00) 1.10 (±0.04)

Pool3D(4,1) 0.70 (±0.00) 0.74 (±0.00) 0.54 (±0.00) 1.89 (±0.16)
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Table 18: MD hyperparameter searches for the MRI+ UNETR (80% threshold). Dimen-
sionality reduction techniques include PCA(np) with np components, UMAP(nu)
with nu components, and nd-dimensional average pooling with kernel size k and
stride s, PoolndD(k,s). Seconds is the amount of time it took to calculate the test
distances. The results are averages (±SD) across 5 runs. Arrows denote whether
higher or lower is better. Bold highlights the best performance per technique.

Experiment AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 0.60 (±0.00) 0.03 (±0.00) 0.57 (±0.00) 1.59 (±0.03)

PCA(4) 0.57 (±0.00) 0.03 (±0.00) 0.62 (±0.00) 1.72 (±0.09)

PCA(8) 0.80 (±0.00) 0.20 (±0.00) 0.46 (±0.00) 1.56 (±0.03)

PCA(16) 0.84 (±0.01) 0.10 (±0.01) 0.35 (±0.02) 1.60 (±0.23)

PCA(32) 0.85 (±0.01) 0.13 (±0.00) 0.34 (±0.02) 1.86 (±0.32)

PCA(64) 0.80 (±0.01) 0.06 (±0.00) 0.36 (±0.02) 1.71 (±0.05)

PCA(128) 0.75 (±0.02) 0.04 (±0.00) 0.37 (±0.01) 2.88 (±0.13)

PCA(256) 0.75 (±0.01) 0.04 (±0.00) 0.32 (±0.01) 3.57 (±0.10)

UMAP(2) 0.68 (±0.07) 0.05 (±0.01) 0.49 (±0.06) 21.29 (±0.43)

UMAP(4) 0.64 (±0.07) 0.04 (±0.00) 0.50 (±0.07) 21.37 (±0.44)

UMAP(8) 0.63 (±0.02) 0.03 (±0.00) 0.51 (±0.05) 21.39 (±0.39)

UMAP(16) 0.60 (±0.04) 0.03 (±0.01) 0.54 (±0.05) 21.07 (±0.48)

UMAP(32) 0.57 (±0.04) 0.03 (±0.00) 0.66 (±0.03) 21.35 (±0.64)

UMAP(64) 0.53 (±0.03) 0.03 (±0.01) 0.64 (±0.05) 21.73 (±0.77)

UMAP(128) 0.54 (±0.04) 0.03 (±0.00) 0.61 (±0.04) 21.90 (±0.71)

UMAP(256) 0.55 (±0.04) 0.03 (±0.00) 0.60 (±0.03) 22.47 (±0.51)

Pool2D(2,1) 0.60 (±0.00) 0.03 (±0.00) 0.81 (±0.00) 1,602.81 (±48.97)

Pool2D(2,2) 0.62 (±0.00) 0.03 (±0.00) 0.63 (±0.00) 218.32 (±33.26)

Pool2D(3,1) 0.32 (±0.00) 0.02 (±0.00) 0.96 (±0.00) 208.96 (±24.75)

Pool2D(3,2) 0.58 (±0.00) 0.03 (±0.00) 0.73 (±0.00) 36.33 (±8.93)

Pool2D(4,1) 0.64 (±0.00) 0.04 (±0.00) 0.64 (±0.00) 16.08 (±13.41)

Pool3D(2,1) 0.57 (±0.00) 0.02 (±0.00) 0.61 (±0.00) 1,338.82 (±99.92)

Pool3D(2,2) 0.59 (±0.00) 0.05 (±0.00) 0.88 (±0.00) 68.26 (±7.43)

Pool3D(3,1) 0.39 (±0.00) 0.02 (±0.00) 0.99 (±0.00) 117.52 (±9.36)

Pool3D(3,2) 0.59 (±0.00) 0.03 (±0.00) 0.66 (±0.00) 29.52 (±6.92)

Pool3D(4,1) 0.62 (±0.00) 0.03 (±0.00) 0.62 (±0.00) 39.30 (±0.49)
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Table 19: MD hyperparameter searches for the MRI+ nnU-net (95% threshold). Dimen-
sionality reduction techniques include PCA(np) with np components, UMAP(nu)
with nu components, and nd-dimensional average pooling with kernel size k and
stride s, PoolndD(k,s). Seconds is the amount of time it took to calculate the test
distances. The results are averages (±SD) across 5 runs. Arrows denote whether
higher or lower is better. Bold highlights the best performance per technique.

Experiment AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 0.88 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 1.04 (±0.04)

PCA(4) 0.65 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.17 (±0.06)

PCA(8) 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.12 (±0.04)

PCA(16) 0.91 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.16 (±0.03)

PCA(32) 0.89 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 1.22 (±0.03)

PCA(64) 0.81 (±0.01) 1.00 (±0.00) 1.00 (±0.00) 1.28 (±0.08)

PCA(128) 0.85 (±0.01) 1.00 (±0.00) 0.67 (±0.21) 1.66 (±0.05)

PCA(256) 0.84 (±0.01) 1.00 (±0.00) 0.93 (±0.13) 2.27 (±0.08)

UMAP(2) 0.60 (±0.07) 0.99 (±0.00) 1.00 (±0.00) 18.34 (±0.71)

UMAP(4) 0.68 (±0.08) 1.00 (±0.00) 0.87 (±0.27) 18.69 (±0.47)

UMAP(8) 0.77 (±0.07) 1.00 (±0.00) 0.73 (±0.33) 19.27 (±0.94)

UMAP(16) 0.82 (±0.08) 1.00 (±0.00) 0.67 (±0.03) 19.07 (±0.96)

UMAP(32) 0.66 (±0.09) 1.00 (±0.00) 0.93 (±0.13) 18.74 (±0.63)

UMAP(64) 0.55 (±0.11) 1.00 (±0.00) 0.93 (±0.13) 18.45 (±0.32)

UMAP(128) 0.64 (±0.03) 1.00 (±0.00) 1.00 (±0.00) 19.20 (±0.85)

UMAP(256) 0.67 (±0.11) 1.00 (±0.00) 1.00 (±0.00) 19.85 (±0.99)

Pool2D(2,1) 0.85 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 1,579.73 (±52.41)

Pool2D(2,2) 0.49 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 32.25 (±0.16)

Pool2D(3,1) 0.39 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 372.05 (±7.89)

Pool2D(3,2) 0.20 (±0.00) 0.98 (±0.00) 1.00 (±0.00) 47.42 (±11.16)

Pool2D(4,1) 0.72 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 103.14 (±20.14)

Pool3D(2,1) 0.36 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,052.74 (±52.81)

Pool3D(2,2) 0.81 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 35.73 (±8.67)

Pool3D(3,1) 0.27 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 145.59 (±13.95)

Pool3D(3,2) 0.84 (±0.00) 1.00 (±0.00) 0.67 (±0.00) 24.64 (±11.49)

Pool3D(4,1) 0.66 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 36.02 (±11.78)
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Table 20: MD hyperparameter searches for the CT nnU-net (95% threshold). Dimensional-
ity reduction techniques include PCA(np) with np components, UMAP(nu) with
nu components, and nd-dimensional average pooling with kernel size k and stride
s, PoolndD(k,s). Seconds is the amount of time it took to calculate the test
distances. The results are averages (±SD) across 5 runs. Arrows denote whether
higher or lower is better. Bold highlights the best performance per technique.

Experiment AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 0.45 (±0.00) 0.10 (±0.00) 0.95 (±0.00) 6.45 (±0.12)

PCA(4) 0.51 (±0.00) 0.16 (±0.00) 0.91 (±0.00) 6.64 (±0.11)

PCA(8) 0.55 (±0.00) 0.13 (±0.00) 0.85 (±0.00) 7.22 (±0.07)

PCA(16) 0.51 (±0.00) 0.12 (±0.00) 0.96 (±0.00) 7.79 (±0.15)

PCA(32) 0.56 (±0.00) 0.17 (±0.00) 0.92 (±0.00) 8.17 (±0.23)

PCA(64) 0.56 (±0.00) 0.16 (±0.00) 0.93 (±0.00) 8.57 (±0.24)

PCA(128) 0.56 (±0.00) 0.15 (±0.00) 0.97 (±0.00) 9.53 (±0.36)

PCA(256) 0.54 (±0.00) 0.13 (±0.00) 0.98 (±0.00) 40.72 (±2.68)

UMAP(2) 0.58 (±0.07) 0.17 (±0.05) 0.86 (±0.11) 204.88 (±1.76)

UMAP(4) 0.52 (±0.02) 0.17 (±0.05) 0.93 (±0.02) 208.06 (±6.61)

UMAP(8) 0.57 (±0.03) 0.16 (±0.05) 0.87 (±0.07) 216.04 (±8.45)

UMAP(16) 0.63 (±0.02) 0.27 (±0.01) 0.77 (±0.02) 221.97 (±14.13)

UMAP(32) 0.67 (±0.01) 0.29 (±0.03) 0.81 (±0.08) 268.08 (±25.20)

UMAP(64) 0.67 (±0.02) 0.26 (±0.02) 0.78 (±0.04) 305.58 (±46.07)

UMAP(128) 0.68 (±0.03) 0.22 (±0.01) 0.74 (±0.09) 288.42 (±25.99)

UMAP(256) 0.62 (±0.03) 0.17 (±0.04) 0.72 (±0.10) 351.84 (±18.14)

Pool2D(2,1) 0.46 (± 0.00) 0.12 (±0.00) 0.92 (±0.00) 1,886.94 (±51.54)

Pool2D(2,2) 0.59 (±0.00) 0.13 (±0.00) 0.84 (±0.00) 163.84 (±19.54)

Pool2D(3,1) 0.47 (±0.00) 0.11 (±0.00) 0.94 (±0.00) 654.53 (±34.88)

Pool2D(3,2) 0.46 (±0.00) 0.10 (±0.00) 0.92 (±0.00) 77.30 (±39.40)

Pool2D(4,1) 0.57 (±0.00) 0.13 (±0.00) 0.73 (±0.00) 198.10 (±50.88)

Pool3D(2,1) 0.54 (±0.00) 0.12 (±0.00) 0.88 (±0.00) 1214.52 (±77.92)

Pool3D(2,2) 0.55 (±0.00) 0.11 (±0.00) 0.75 (±0.00) 106.38 (±27.31)

Pool3D(3,1) 0.49 (±0.00) 0.13 (±0.00) 0.91 (±0.00) 298.91 (±15.05)

Pool3D(3,2) 0.50 (±0.00) 0.10 (±0.00) 0.90 (±0.00) 93.39 (±15.41)

Pool3D(4,1) 0.57 (±0.00) 0.13 (±0.00) 0.69 (±0.00) 125.90 (±13.68)
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B.2 K-Nearest Neighbors

Table 21: KNN hyperparameter searches for MRI UNETR (95% threshold). Dimensionality
reduction techniques include PCA(np) with np components, UMAP(nu) with nu

components, and nd-dimensional average pooling with kernel size k and stride s,
PoolndD(k,s). Only the best-performing configuration of k is reported, with the
logs containing all results available at https://github.com/mckellwoodland/

dimen_reduce_mahal/tree/main/logs. Seconds is the amount of time it took to
calculate the test distances. The results are averages (±SD) across 5 runs. Arrows
denote whether higher or lower is better. Bold highlights the best performance
per technique.

Experiment K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 256 0.90 (±0.00) 0.92 (±0.00) 0.31 (±0.00) 0.95 (±0.05)

PCA(4) 256 0.84 (±0.00) 0.88 (±0.00) 0.46 (±0.00) 0.93 (±0.04)

PCA(8) 256 0.84 (±0.00) 0.86 (±0.00) 0.43 (±0.04) 0.91 (±0.02)

PCA(16) 256 0.86 (±0.00) 0.88 (±0.00) 0.31 (±0.00) 1.04 (±0.08)

PCA(32) 256 0.86 (±0.00) 0.88 (±0.00) 0.31 (±0.00) 1.24 (±0.19)

PCA(64) 256 0.87 (±0.00) 0.88 (±0.00) 0.23 (±0.00) 1.25 (±0.04)

PCA(128) 256 0.87 (±0.00) 0.88 (±0.00) 0.23 (±0.00) 1.86 (±0.03)

PCA(256) 8 0.88 (±0.00) 0.89 (±0.00) 0.26 (±0.04) 2.64 (±0.08)

UMAP(2) 256 0.75 (±0.03) 0.79 (±0.07) 0.82 (±0.08) 5.67 (±0.13)

UMAP(4) 256 0.82 (±0.04) 0.84 (±0.04) 0.59 (±0.15) 6.41 (±0.20)

UMAP(8) 256 0.82 (±0.03) 0.82 (±0.06) 0.46 (±0.10) 6.15 (±0.16)

UMAP(16) 256 0.79 (±0.03) 0.82 (±0.04) 0.57 (±0.08) 5.72 (±0.15)

UMAP(32) 256 0.83 (±0.05) 0.85 (±0.04) 0.51 (±0.08) 6.70 (±0.15)

UMAP(64) 256 0.80 (±0.05) 0.84 (±0.05) 0.65 (±0.13) 6.60 (±0.21)

UMAP(128) 256 0.77 (±0.07) 0.81 (±0.06) 0.69 (±0.17) 6.80 (±0.13)

UMAP(256) 256 0.80 (±0.04) 0.84 (±0.03) 0.74 (±0.17) 7.21 (±0.12)

Pool2D(2,1) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 4.90 (±0.06)

Pool2D(2,2) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.74 (±0.04)

Pool2D(3,1) 256 0.96 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 2.75 (±0.03)

Pool2D(3,2) 256 0.94 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 9.54 (±8.16)

Pool2D(4,1) 256 0.91 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 1.09 (±0.01)

Pool3D(2,1) 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 4.27 (±0.08)

Pool3D(2,2) 256 0.85 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 0.36 (±0.01)

Pool3D(3,1) 256 0.94 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.76 (±0.08)

Pool3D(3,2) 256 0.92 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 0.36 (±0.00)

Pool3D(4,1) 256 0.89 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 0.64 (±0.02)
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Table 22: KNN hyperparameter searches for MRI+ UNETR (80% threshold). Dimensional-
ity reduction techniques include PCA(np) with np components, UMAP(nu) with
nu components, and nd-dimensional average pooling with kernel size k and stride
s, PoolndD(k,s). Only the best-performing configuration of k is reported, with the
logs containing all results available at https://github.com/mckellwoodland/

dimen_reduce_mahal/tree/main/logs. Seconds is the amount of time it took
to calculate the test distances. The results are averages (±SD) across 5 runs.
Arrows denote whether higher or lower is better. Bold highlights the best per-
formance per technique.

Experiment K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 128 0.62 (±0.00) 0.03 (±0.00) 0.49 (±0.00) 1.43 (±0.10)

PCA(4) 128 0.63 (±0.00) 0.03 (±0.00) 0.54 (±0.00) 1.35 (±0.03)

PCA(8) 128 0.78 (±0.00) 0.06 (±0.00) 0.43 (±0.00) 1.42 (±0.04)

PCA(16) 64 0.82 (±0.01) 0.09 (±0.01) 0.42 (±0.01) 1.44 (±0.03)

PCA(32) 64 0.84 (±0.01) 0.17 (±0.02) 0.40 (±0.01) 1.57 (±0.06)

PCA(64) 128 0.83 (±0.01) 0.11 (±0.01) 0.42 (±0.01) 1.67 (±0.10)

PCA(128) 128 0.83 (±0.00) 0.13 (±0.01) 0.42 (±0.01) 2.66 (±0.11)

PCA(256) 64 0.83 (±0.00) 0.14 (±0.01) 0.42 (±0.01) 4.26 (±1.19)

UMAP(2) 128 0.69 (±0.09) 0.07 (±0.06) 0.46 (±0.08) 17.26 (±0.61)

UMAP(4) 64 0.78 (±0.05) 0.09 (±0.06) 0.42 (±0.07) 15.70 (±0.45)

UMAP(8) 128 0.73 (±0.09) 0.06 (±0.03) 0.46 (±0.06) 17.80 (±0.26)

UMAP(16) 128 0.73 (±0.05) 0.08 (±0.06) 0.46 (±0.03) 17.26 (±0.77)

UMAP(32) 128 0.73 (±0.07) 0.06 (±0.04) 0.46 (±0.05) 17.23 (±0.25)

UMAP(64) 256 0.74 (±0.07) 0.05 (±0.01) 0.42 (±0.06) 17.43 (±0.88)

UMAP(128) 256 0.74 (±0.05) 0.05 (±0.02) 0.44 (±0.03) 18.50 (±0.86)

UMAP(256) 64 0.75 (±0.06) 0.12 (±0.16) 0.39 (±0.03) 17.27 (±0.50)

Pool2D(2,1) 128 0.86 (±0.00) 0.19 (±0.00) 0.40 (±0.00) 6.28 (±0.05)

Pool2D(2,2) 256 0.85 (±0.00) 0.27 (±0.00) 0.43 (±0.00) 13.53 (±7.27)

Pool2D(3,1) 64 0.86 (±0.00) 0.15 (±0.00) 0.31 (±0.00) 2.81 (±0.06)

Pool2D(3,2) 256 0.76 (±0.00) 0.07 (±0.00) 0.58 (±0.00) 1.34 (±0.06)

Pool2D(4,1) 32 0.85 (±0.00) 0.27 (±0.00) 0.40 (±0.00) 9.09 (±5.19)

Pool3D(2,1) 256 0.87 (±0.00) 0.30 (±0.00) 0.38 (±0.00) 23.34 (±2.74)

Pool3D(2,2) 256 0.87 (±0.00) 0.33 (±0.00) 0.43 (±0.00) 11.21 (±7.66)

Pool3D(3,1) 64 0.87 (±0.00) 0.19 (±0.00) 0.30 (±0.00) 2.30 (±0.10)

Pool3D(3,2) 64 0.78 (±0.00) 0.06 (±0.00) 0.41 (±0.00) 11.14 (±6.26)

Pool3D(4,1) 8 0.84 (±0.00) 0.26 (±0.00) 0.41 (±0.00) 1.24 (±0.07)
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Table 23: KNN hyperparameter searches for MRI+ nnU-net (95% threshold). Dimensional-
ity reduction techniques include PCA(np) with np components, UMAP(nu) with
nu components, and nd-dimensional average pooling with kernel size k and stride
s, PoolndD(k,s). Only the best-performing configuration of k is reported, with the
logs containing all results available at https://github.com/mckellwoodland/

dimen_reduce_mahal/tree/main/logs. Seconds is the amount of time it took
to calculate the test distances. The results are averages (±SD) across 5 runs.
Arrows denote whether higher or lower is better. Bold highlights the best per-
formance per technique.

Experiment K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 256 0.94 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.99 (±0.02)

PCA(4) 256 0.75 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.04 (±0.02)

PCA(8) 256 0.97 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.16 (±0.07)

PCA(16) 256 0.98 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 1.16 (±0.08)

PCA(32) 256 0.95 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.25 (±0.04)

PCA(64) 256 0.95 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.24 (±0.07)

PCA(128) 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.71 (±0.07)

PCA(256) 256 0.95 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 2.89 (±0.41)

UMAP(2) 2 0.96 (±0.04) 1.00 (±0.00) 0.13 (±0.16) 14.91 (±2.08)

UMAP(4) 2 0.94 (±0.02) 1.00 (±0.00) 0.33 (±0.00) 15.15 (±2.30)

UMAP(8) 2 0.94 (±0.03) 1.00 (±0.00) 0.40 (±0.33) 15.22 (±1.57)

UMAP(16) 2 0.94 (±0.02) 1.00 (±0.00) 0.26 (±0.13) 14.89 (±2.38)

UMAP(32) 2 0.89 (±0.05) 1.00 (±0.00) 0.40 (±0.33) 14.64 (±1.92)

UMAP(64) 2 0.92 (±0.02) 1.00 (±0.00) 0.26 (±0.13) 14.82 (±1.92)

UMAP(128) 2 0.92 (±0.02) 1.00 (±0.00) 0.33 (±0.00) 15.08 (±1.74)

UMAP(256) 2 0.91 (±0.04) 1.00 (±0.00) 0.40 (±0.14) 15.75 (±1.83)

Pool2D(2,1) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 4.90 (±0.06)

Pool2D(2,2) 256 0.98 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.74 (±0.04)

Pool2D(3,1) 256 0.96 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 2.75 (±0.03)

Pool2D(3,2) 256 0.94 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 9.54 (±8.16)

Pool2D(4,1) 256 0.91 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 1.09 (±0.01)

Pool3D(2,1) 256 0.96 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 4.27 (±0.08)

Pool3D(2,2) 256 0.85 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 0.36 (±0.01)

Pool3D(3,1) 256 0.94 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 1.76 (±0.08)

Pool3D(3,2) 256 0.92 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 0.36 (±0.00)

Pool3D(4,1) 256 0.89 (±0.00) 1.00 (±0.00) 0.33 (±0.00) 0.64 (±0.02)
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Table 24: KNN hyperparameter searches for CT nnU-net (95% threshold). Dimensionality
reduction techniques include PCA(np) with np components, UMAP(nu) with nu

components, and nd-dimensional average pooling with kernel size k and stride s,
PoolndD(k,s). Only the best-performing configuration of k is reported, with the
logs containing all results available at https://github.com/mckellwoodland/

dimen_reduce_mahal/tree/main/logs. Seconds is the amount of time it took to
calculate the test distances. The results are averages (±SD) across 5 runs. Arrows
denote whether higher or lower is better. Bold highlights the best performance
per technique.

Experiment K AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓
PCA(2) 8 0.42 (±0.00) 0.09 (±0.00) 0.93 (±0.00) 4.95 (±0.12)

PCA(4) 256 0.47 (±0.00) 0.11 (±0.00) 0.91 (±0.00) 5.91 (±0.84)

PCA(8) 4 0.55 (±0.00) 0.15 (±0.00) 0.97 (±0.00) 4.94 (±0.04)

PCA(16) 4 0.52 (±0.00) 0.12 (±0.00) 0.96 (±0.00) 5.00 (±0.04)

PCA(32) 4 0.52 (±0.00) 0.13 (±0.00) 0.97 (±0.00) 5.20 (±0.07)

PCA(64) 8 0.53 (±0.00) 0.13 (±0.00) 0.96 (±0.00) 5.60 (±0.10)

PCA(128) 4 0.53 (±0.00) 0.13 (±0.00) 0.96 (±0.00) 5.98 (±0.04)

PCA(256) 4 0.53 (±0.00) 0.13 (±0.00) 0.96 (±0.00) 24.75 (±14.29)

UMAP(2) 256 0.64 (±0.02) 0.24 (±0.04) 0.88 (±0.03) 200.58 (±1.93)

UMAP(4) 256 0.65 (±0.01) 0.24 (±0.05) 0.88 (±0.02) 199.93 (±1.96)

UMAP(8) 256 0.65 (±0.01) 0.22 (±0.04) 0.87 (±0.02) 198.33 (±2.34)

UMAP(16) 256 0.65 (±0.00) 0.23 (±0.05) 0.86 (±0.01) 204.01 (±1.27)

UMAP(32) 256 0.63 (±0.01) 0.19 (±0.04) 0.88 (±0.02) 195.59 (±0.55)

UMAP(64) 256 0.65 (±0.01) 0.22 (±0.03) 0.88 (±0.01) 197.23 (±0.68)

UMAP(128) 256 0.64 (±0.01) 0.18 (±0.01) 0.86 (±0.03) 199.48 (±1.40)

UMAP(256) 256 0.64 (±0.00) 0.19 (±0.02) 0.87 (±0.03) 200.73 (±0.65)

Pool2D(2,1) 4 0.53 (±0.00) 0.15 (±0.00) 0.95 (±0.00) 97.91 (±9.21)

Pool2D(2,2) 32 0.52 (±0.00) 0.15 (±0.00) 0.95 (±0.00) 33.17 (±6.84)

Pool2D(3,1) 2 0.52 (±0.00) 0.14 (±0.00) 0.93 (±0.00) 104.41 (±14.69)

Pool2D(3,2) 4 0.51 (±0.00) 0.12 (±0.00) 0.95 (±0.00) 84.06 (±16.41)

Pool2D(4,1) 4 0.52 (±0.00) 0.11 (±0.00) 0.95 (±0.00) 42.95 (±16.59)

Pool3D(2,1) 4 0.54 (±0.00) 0.14 (±0.00) 0.96 (±0.00) 98.68 (±39.50)

Pool3D(2,2) 4 0.54 (±0.00) 0.14 (±0.00) 0.96 (±0.00) 81.96 (±26.79)

Pool3D(3,1) 4 0.53 (±0.00) 0.14 (±0.00) 0.94 (±0.00) 81.41 (±28.32)

Pool3D(3,2) 4 0.53 (±0.00) 0.13 (±0.00) 0.95 (±0.00) 75.00 (±14.21)

Pool3D(4,1) 4 0.53 (±0.00) 0.13 (±0.00) 0.93 (±0.00) 84.91 (±11.64)
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B.3 Temperature Scaling and Energy Scoring

Table 25: Temperature scaling (TS) and energy scoring (Energy) hyperparameter searches
for the UNETRs. Seconds is the amount of time it took to calculate the test
distances. The results are averages (±SD) across 5 runs. Arrows denote whether
higher or lower is better. Bold denotes the best performance per method and
model.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI
UNETR

TS

2 0.90 (±0.00) 0.93 (±0.00) 0.15 (±0.00) 9.25 (±0.11)

3 0.72 (±0.00) 0.77 (±0.00) 0.38 (±0.00) 9.22 (±0.04)

4 0.67 (±0.00) 0.71 (±0.00) 0.46 (±0.00) 9.21 (±0.10)

5 0.61 (±0.00) 0.64 (±0.00) 0.54 (±0.00) 9.08 (±0.06)

10 0.57 (±0.00) 0.58 (±0.00) 0.62 (±0.00) 9.17 (±0.06)

100 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 9.22 (±0.10)

1000 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 9.20 (±0.07)

Energy

1 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.32 (±0.28)

2 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.25 (±0.17)

3 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.08 (±0.14)

4 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.21 (±0.12)

5 0.55 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.38 (±0.22)

10 0.54 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.11 (±0.09)

100 0.54 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.28 (±0.11)

1000 0.54 (±0.00) 0.57 (±0.00) 0.69 (±0.00) 7.19 (±0.14)

MRI+
UNETR

TS

2 0.47 (±0.00) 0.05 (±0.00) 0.78 (±0.00) 60.57 (±0.31)

3 0.44 (±0.00) 0.04 (±0.00) 0.86 (±0.00) 60.87 (±0.27)

4 0.42 (±0.00) 0.04 (±0.00) 0.88 (±0.00) 60.55 (±0.27)

5 0.42 (±0.00) 0.03 (±0.00) 0.90 (±0.00) 60.56 (±0.16)

10 0.42 (±0.00) 0.03 (±0.00) 0.89 (±0.00) 60.15 (±0.12)

100 0.44 (±0.00) 0.04 (±0.00) 0.88 (±0.00) 60.79 (±0.75)

1000 0.45 (±0.00) 0.04 (±0.00) 0.88 (±0.00) 60.67 (±0.18)

Energy

1 0.44 (±0.00) 0.03 (±0.00) 0.89 (±0.00) 35.39 (±1.46)

2 0.43 (±0.00) 0.03 (±0.00) 0.90 (±0.00) 34.82 (±0.38)

3 0.44 (±0.00) 0.03 (±0.00) 0.89 (±0.00) 34.94 (±0.23)

4 0.46 (±0.00) 0.03 (±0.00) 0.88 (±0.00) 35.14 (±0.58)

5 0.47 (±0.00) 0.04 (±0.00) 0.87 (±0.00) 35.61 (±0.40)

10 0.51 (±0.00) 0.05 (±0.00) 0.85 (±0.00) 36.23 (±0.11)

100 0.54 (±0.00) 0.06 (±0.00) 0.79 (±0.00) 35.92 (±0.63)

1000 0.61 (±0.00) 0.03 (±0.00) 0.71 (±0.00) 35.86 (±0.41)
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Table 26: Temperature scaling (TS) and energy scoring (Energy) hyperparameter searches
for the nnU-nets. NaN signifies that the calculation did not produce a number due
to computational instabilities. Seconds is the amount of time it took to calculate
the test distances. The results are averages (±SD) across 5 runs. Arrows denote
whether higher or lower is better. Bold denotes the best performance per method
and model.

Model Method T AUROC ↑ AUPRC ↑ FPR90 ↓ Seconds ↓

MRI+
nnU-net

TS

2 0.45 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,254.10 (±0.29)

3 0.50 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,252.72 (±0.52)

4 0.53 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,253.29 (±0.62)

5 0.53 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,252.59 (±0.76)

10 0.55 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,252.78 (±0.73)

100 0.50 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,253.07 (±0.80)

1000 0.50 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 1,204.30 (±0.48)

Energy

1 0.58 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.32 (±0.49)

2 0.58 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 185.73 (±0.76)

3 0.59 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.50 (±0.49)

4 0.59 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.55 (±0.76)

5 0.60 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.62 (±0.19)

10 0.61 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 186.88 (±0.47)

100 NaN NaN NaN NaN
1000 NaN NaN NaN NaN

CT
nnU-net

TS

2 0.68 (±0.00) 0.25 (±0.00) 0.66 (±0.00) 699.65 (±0.83)

3 0.68 (±0.00) 0.26 (±0.00) 0.69 (±0.00) 699.07 (±0.37)

4 0.68 (±0.00) 0.25 (±0.00) 0.69 (±0.00) 699.38 (±0.60)

5 0.67 (±0.00) 0.25 (±0.00) 0.69 (±0.00) 699.45 (±0.39)

10 0.67 (±0.00) 0.24 (±0.00) 0.70 (±0.00) 699.68 (±0.42)

100 0.67 (±0.00) 0.15 (±0.00) 0.36 (±0.00) 700.37 (±0.41)

1000 0.57 (±0.00) 0.10 (±0.00) 1.00 (±0.00) 670.35 (±0.69)

Energy

1 0.66 (±0.00) 0.26 (±0.00) 0.72 (±0.00) 105.88 (±0.90)

2 0.67 (±0.00) 0.26 (±0.00) 0.75 (±0.00) 105.66 (±0.60)

3 0.67 (±0.00) 0.25 (±0.00) 0.75 (±0.00) 106.26 (±0.52)

4 0.66 (±0.00) 0.24 (±0.00) 0.75 (±0.00) 106.06 (±0.68)

5 0.66 (±0.00) 0.23 (±0.00) 0.75 (±0.00) 106.15 (±0.61)

10 0.66 (±0.00) 0.17 (±0.00) 0.76 (±0.00) 106.12 (±0.56)

100 NaN NaN NaN NaN
1000 0.40 (±0.00) 0.08 (±0.00) 1.00 (±0.00) 105.69 (±0.62)
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Appendix C. Additional Figures

Figure 5: Sample images from the AMOS dataset (Ji, 2022) that represent the baseline and
low perceptual resolution images that were clustered separately by the dimen-
sionality reduction techniques.

Figure 6: Sample slices from different scans from the same patient with a large tumor.
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