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Abstract

Deep learning has emerged as a strong alternative for classical iterative methods for de-
formable medical image registration, where the goal is to find a mapping between the
coordinate systems of two images. Popular classical image registration methods enforce
the useful inductive biases of symmetricity, inverse consistency, and topology preservation
by construction. However, while many deep learning registration methods encourage these
properties via loss functions, no earlier methods enforce all of them by construction. Here,
we propose a novel registration architecture based on extracting multi-resolution feature
representations which is by construction symmetric, inverse consistent, and topology pre-
serving. We also develop an implicit layer for memory efficient inversion of the deformation
fields. Our method achieves state-of-the-art registration accuracy on three datasets. The
code is available at https://github.com/honkamj/SITReg.
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1. Introduction

Deformable medical image registration aims at finding a mapping between coordinate sys-
tems of two images, called a deformation, to align them anatomically. Deep learning can
be used to train a registration network which takes as input two images and outputs a
deformation. We focus on unsupervised intra-modality registration without a ground-truth
deformation and where images are of the same modality, applicable, e.g., when deforming
brain MRI images from different patients to an atlas or analyzing a patient’s breathing cycle
from multiple images.

Success of the most popular deep learning architectures is often seen through the desir-
able inductive biases imposed by suitable geometric priors (such as translation equivariance
for CNNs) (Bronstein et al., 2017, 2021). In image registration priors of inverse consistency,
symmetry, and topology preservation are widely considered to be useful (Sotiras et al., 2013).
While some of the most popular classical methods enforce all of these properties by con-
struction (Ashburner, 2007; Avants et al., 2008), no prior deep learning methods do, and
we address this gap (see a detailed literature review in Appendix F). To clearly state our
contributions, we start by defining the properties (further clarifications in Appendix J).

We define a registration method as a function f that takes two images, say xA and
xB, and produces a deformation. In general one can predict the deformation with any
method in either direction by varying the input order, but some methods predict both
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Symmetric, inverse consistent, and topology preserving image registration

xA

xB

f1→2(xA, xB) f2→1(xA, xB) f1→2(xA, xB) ◦ f2→1(xA, xB)

Figure 1: Example deformation from the method. Left: Forward deformation. Mid-
dle: Inverse deformation. Right: Composition of the forward and inverse defor-
mations. Only one 2D slice is shown of the 3D deformation. The deformation
is from the LPBA40 experiment. For more detailed visualization of a predicted
deformation, see Figure 10 in Appendix H.

forward and inverse deformations directly, and we use subscripts to indicate the direction
for such methods. For example, f1→2 produces a deformation that aligns the image of the
first argument to the image of the second argument. Note that even if f1→2(xA, xB) and
f2→1(xB, xA) both denote a deformation for aligning image xA to xB, they in general can
be different functions. As a result, a registration method may predict up to four different
deformations for any given input pair: f1→2(xA, xB), f2→1(xA, xB), f1→2(xB, xA), and
f2→1(xB, xA). If a method predicts a deformation only in one direction for a given input
order, we might omit the subscript.

Inverse consistent registration methods ensure that f1→2(xA, xB) is an accurate inverse
of f2→1(xA, xB), which we quantify using the inverse consistency error : ||f1→2(xA, xB) ◦
f2→1(xA, xB)−I||2, where ◦ is the composition operator and I is the identity deformation.
Inverse consistency has been enforced using a loss or by construction. However, due to a
limited spatial resolution of the predicted deformations, even for the by construction inverse
consistent methods the inverse consistency error is not exactly zero (Ashburner, 2007).

In symmetric registration, the registration outcome does not depend on the order of the
inputs, i.e., f1→2(xA, xB) equals f2→1(xB, xA). Unlike with inverse consistency, f1→2(xA, xB)
can equal f2→1(xB, xA) exactly (Avants et al., 2008; Estienne et al., 2021), which we call
symmetric by construction. A related property, cycle consistency, can be assessed using cy-
cle consistency error ||f(xA, xB)◦f(xB, xA)−I||2. It can be computed for any method since
it does not require the method to predict deformations in both directions. If the method is
symmetric by construction, inverse consistency error equals cycle consistency error.

We define topology preservation of predicted deformations similarly to Christensen et al.
(1995). From the real-world point of view this means the preservation of anatomical struc-
tures, preventing non-smooth changes. Mathematically we want the deformations to be
homeomorphisms, i.e., invertible and continuous. In registration literature it is common
to talk about diffeomorphims which are additionally differentiable. In practice we want a
deformation not to fold on top of itself which we measure by estimating the local Jacobian
determinants of the predicted deformations, and checking whether they are positive.
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With these definitions at hand, we summarize our main contributions as follows:

• We propose a novel multi-resolution deep learning registration architecture which is by
construction inverse consistent, symmetric, and preserves topology. The properties are
fulfilled for the whole multi-resolution pipeline, not just separately for each resolution.
Apart from the parallel works by (Greer et al., 2023; Zhang et al., 2023), we are
not aware of other multi-resolution deep learning registration methods which are by
construction both symmetric and inverse consistent. For motivation of the multi-
resolution approach, see Section 2.4.

• As a component in our architecture, we propose an implicit neural network layer,
which we call deformation inversion layer, based on a well-known fixed point iteration
formula (Chen et al., 2008) and recent advances in Deep Equilibrium models (Bai
et al., 2019; Duvenaud et al., 2020). The layer allows memory efficient inversion of
deformation fields.

• We show that the method achieves state-of-the-art results on two brain subject-to-
subject registration datasets, and state-of-the-art results for deep learning methods
on inspiration-exhale registration of lung CT scans.

We name the method SITReg after its symmetricity, inverse consistency and topology
preservation properties.

2. Background and preliminaries

2.1 Topology preserving registration

The diffeomorphic LDDMM framework (Cao et al., 2005) was the first approach suggested
for by construction topology preserving registration. The core idea was to generate diffeo-
morphisms through integration of time-varying velocity fields constrained by certain dif-
ferential equations. Arsigny et al. (2006) suggested more constrained but computationally
cheaper stationary velocity field (SVF) formulation and it was later adopted by popular reg-
istration algorithms (Ashburner, 2007; Vercauteren et al., 2009). While some unsupervised
deep learning methods do use the LDDMM approach for generating topology preserving
deformations (Shen et al., 2019b; Ramon et al., 2022; Wang et al., 2023), most commonly
(Chen et al., 2023) topology preservation in unsupervised deep learning is achieved using
the more efficient SVF formulation, e.g. by Krebs et al. (2018, 2019); Niethammer et al.
(2019); Shen et al. (2019a,b); Mok and Chung (2020a).

Another classical method by Choi and Lee (2000); Rueckert et al. (2006) generates
topology preserving deformations by constraining each deformation to be diffeomorphic but
small, and forming the final deformation as a composition of multiple small deformations.
Since diffeomorphisms form a group under composition, the final deformation is diffeomor-
phic. The principle is close to a practical implementation of the SVF, where the velocity
field is integrated by first scaling it down by a power of two and interpreting the result as a
small deformation, which is then repeatedly composed with itself. The idea is hence similar:
a composition of small deformations.

In this work we build topology preserving deformations using the same strategy, as a
composition of small topology preserving deformations.
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2.2 Inverse consistent registration

Originally inverse consistency was achieved via variational losses (Christensen et al., 1995)
but later LDDMM and SVF frameworks allowed for inverse consistent by construction
methods since the inverse can be obtained by integrating the velocity field in the opposite
direction. Both approaches are found among the deep learning methods as well, as some
enforce inverse consistency via a penalty (Zhang, 2018; Kim et al., 2019; Estienne et al.,
2021), and many use the SVF formulation as mentioned in Section 2.1.

Compared to the earlier deep learning approaches, we take a methodologically slightly
different approach of using the proposed deformation inversion layer for building an inverse
consistent architecture.

2.3 Symmetric registration

Symmetric registration methods consider both images equally: swapping the input order
should not change the registration outcome. Developing symmetric registration methods
has a long history (Sotiras et al., 2013), but one particularly relevant for this work is a
method called symmetric normalization (SyN, Avants et al., 2008) which learns two separate
transformations: one for deforming the first image half-way toward the second image and
the other for deforming the second image half-way toward the first image. The images
are matched in the intermediate coordinates and the full deformation is obtained as a
composition of the half-way deformations (one of which is inverted). The same idea was
applied in deep learning setting by SYMNet (Mok and Chung, 2020a). However, SYMNet
does not guarantee symmetricity by construction during inference (see Figure 7 in Appendix
H). Some existing deep learning registration methods enforce cycle consistency via a penalty
(Mahapatra and Ge, 2019; Gu et al., 2020; Zheng et al., 2021), and the method by Estienne
et al. (2021) is symmetric by construction but only for a single component of their multi-
step formulation, and not inverse consistent by construction. Recently, parallel with and
unrelated to us, Iglesias (2023); Greer et al. (2023); Zhang et al. (2023) have proposed
by construction symmetric and inverse consistent registration methods within the SVF
framework, in a different way from us.

We use the idea of deforming the images half-way towards each other to achieve sym-
metry throughout our multi-resolution architecture.

2.4 Multi-resolution registration

Multi-resolution registration methods learn the deformation by first estimating it in a low
resolution and then incrementally improving it while increasing the resolution. For each
resolution one feeds the input images deformed with the deformation learned thus far, and
incrementally composes the full deformation. Since its introduction a few decades ago
(Rueckert et al., 1999; Oliveira and Tavares, 2014), the approach has been used in the
top-performing classical and deep learning registration methods (Avants et al., 2008; Klein
et al., 2009; Mok and Chung, 2020b, 2021; Hering et al., 2022).

In this work we propose the first multi-resolution deep learning registration architecture
that is by construction symmetric, inverse consistent, and topology preserving.
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2.5 Deep equilibrium networks

Deep equilibrium networks use implicit fixed point iteration layers, which have emerged as
an alternative to the common explicit layers (Bai et al., 2019, 2020; Duvenaud et al., 2020).
Unlike explicit layers, which produce output via an exact sequence of operations, the output
of an implicit layer is defined indirectly as a solution to a fixed point equation, which is
specified using a fixed point mapping. In the simplest case the fixed point mapping takes
two arguments, one of which is the input. For example, let g : A×B → B be a fixed point
mapping defining an implicit layer. Then, for a given input a, the output of the layer is the
solution z to equation

z = g(z, a). (1)

This equation is called a fixed point equation and the solution is called a fixed point solution.
If g has suitable properties, the equation can be solved iteratively by starting with an initial
guess and repeatedly feeding the output as the next input to g. More advanced iteration
methods have also been developed for solving fixed point equations, such as Anderson
acceleration (Walker and Ni, 2011).

The main mathematical innovation related to deep equilibrium networks is that the
derivative of an implicit layer w.r.t. its inputs can be calculated based solely on a fixed
point solution, i.e., no intermediate iteration values need to be stored for back-propagation.
Now, given some solution (a0, z0), such that z0 = g(z0, a0), and assuming certain local
invertibility properties for g, the implicit function theorem says that there exists a solution
mapping in the neighborhood of (a0, z0), which maps other inputs to their corresponding
solutions. Let us denote the solution mapping as z∗. The solution mapping can be seen
as the theoretical explicit layer corresponding to the implicit layer. To find the derivatives
of the implicit layer we need to find the Jacobian of z∗ at point a0 which can be obtained
using implicit differentiation as

∂z∗(a0) = [I − ∂1g(z0, a0)]
−1 ∂0g(z0, a0).

The vector-Jacobian product of z∗ needed for back-propagation can be calculated using an-
other fixed point equation without fully computing the Jacobians, see, e.g., Duvenaud et al.
(2020). Hence, both forward and backward passes of the implicit layer can be computed as
a fixed point iteration.

We use these ideas to develop a neural network layer for inverting deformations based
on the fixed point equation, following Chen et al. (2008). The layer is very memory efficient
as only the fixed point solution needs to be stored for the backward pass.

3. Methods

Let n denote the dimensionality of the image, e.g., n = 3 for 3D medical images, and k
the number of channels, e.g., k = 3 for an RGB-image. The goal in deformable image
registration is to find a mapping from Rn to Rn, connecting the coordinate systems of two
non-aligned images xA, xB : Rn → Rk, called a deformation. Application of a deformation
to an image can be mathematically represented as a (function) composition of the image
and the deformation, denoted by ◦. Furthermore, in practice linear interpolation is used to
represent images (and deformations) in continuous coordinates.
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In this work the deformations are in practice stored as displacement fields with the
same resolution as the registered images, that is, each pixel or voxel is associated with a
displacement vector describing the coordinate difference between the original image and the
deformed image (e.g. if n = 3, displacement field is tensor with shape 3×H×W ×D where
H ×W ×D is the shape of the image). In our notation we equate the displacement fields
with the corresponding coordinate mappings, and always use ◦ to denote the deformation
operation (sometimes called warping).

In deep learning based image registration, we aim at learning a neural network f that
takes two images as input and outputs a mapping between the image coordinates. Specifi-
cally, in medical context f should be such that xA ◦ f(xA, xB) matches anatomically with
xB.

3.1 Symmetric formulation

As discussed in Section 1, we want our method to be cycle consistent. That is, since in
the ideal case of f finding the correct coordinate mapping between any given inputs xA
and xB, f(xA, xB) and f(xB, xA) should be inverses of each other. Hence enforcing such a
property by construction should provide a useful constraint on the optimization space. To
achieve this, we define the network f using another auxiliary network u which also predicts
deformations:

f(xA, xB) := u(xA, xB) ◦ u(xB, xA)−1. (2)

By defining f this way, it holds by construction that f(xA, xB) = f(xB, xA)
−1 apart from

small numerical errors introduced by the composition and inversion. An additional benefit is
that f(xA, xA) equals the identity transformation, again apart from numerical inaccuracies,
which is a natural requirement for a registration method. Applying the formulation in
Equation 2 naively would double the computational cost. To avoid this we encode features
from the inputs separately before feeding them to the deformation extraction network in
Equation 2. A similar approach has been used in recent registration methods (Estienne
et al., 2021; Young et al., 2022). Denoting the feature extraction network by h, the modified
formulation is

f(xA, xB) := u(h(xA), h(xB)) ◦ u(h(xB), h(xA))−1. (3)

3.2 Multi-resolution architecture

As the overarching architecture, we propose a novel symmetric and inverse consistent multi-
resolution coarse-to-fine approach. For motivation, see Section 2.4. Overview of the archi-
tecture is shown in Figure 2, and the prediction process is demonstrated visually in Figure
10 (Appendix H).

First, we extract image feature representations h(k)(xA), h
(k)(xB), at different resolutions

k ∈ {0, . . . ,K−1}. Index k = 0 is the original resolution and increasing k by one halves the
spatial resolution. In practice h is a ResNet (He et al., 2016) style convolutional network and
features at each resolution are extracted sequentially from previous features. Starting from
the lowest resolution k = K−1, we recursively build the final deformation between the inputs
using the extracted representations. To ensure symmetry, we build two deformations: one
deforming the first image half-way towards the second image, and the other for deforming
the second image half-way towards the first image (see Section 2.3). The full deformation is
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Figure 2: Overview of the proposed architecture. Multi-resolution features are first
extracted from the inputs xA and xB using convolutional encoder h. Output de-
formations f1→2(xA, xB) and f2→1(xA, xB) are built recursively from the multi-
resolution features using the symmetric deformation updates described in Section
3.2 and visualized in Figure 3. The architecture is symmetric and inverse con-
sistent with respect to the inputs and the final deformation is obtained in both
directions. The brain images are from the OASIS dataset (Marcus et al., 2007)

composed of these at the final stage. Let us denote the half-way deformations extracted at

resolution k as d
(k)
1→1.5 and d

(k)
2→1.5. Initially, at level k = K, these are identity deformations.

Then, at each k = K− 1, . . . , 0, the half-way deformations are updated by composing them
with a predicted update deformation. In detail, the update at level k consists of three steps
(visualized in Figure 3):

1. Deform the feature representations h(k)(xA), h
(k)(xB) of level k towards each other by

the half-way deformations from the previous level k + 1:

z
(k)
1 := h(k)(xA) ◦ d(k+1)

1→1.5 and z
(k)
2 := h(k)(xB) ◦ d(k+1)

2→1.5. (4)

Note that the deformations have a higher (or the same when k = 0) spatial resolution
than the deformed feature volumes, and in practice we first downsample (with lin-
ear interpolation) the deformation to the resolution of the feature volume, and then
resample the feature volume based on the downsampled deformation.

2. Define an update deformation δ(k), using the idea from Equation 3 and the half-way

deformed feature representations z
(k)
1 and z

(k)
2 :

δ(k) := u(k)(z
(k)
1 , z

(k)
2 ) ◦ u(k)(z(k)2 , z

(k)
1 )−1. (5)

Here, u(k) is a trainable convolutional neural network predicting an invertible auxiliary
deformation (details in Section 3.4). The intuition here is that the symmetrically
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predicted update deformation δ(k) should learn to adjust for whatever differences in
the image features remain after deforming them half-way towards each other in Step
1 with deformations d(k+1) from the previous resolution.

3. Obtain the updated half-way deformation d
(k)
1→1.5 by composing the earlier half-way

deformation of level k + 1 with the update deformation δ(k)

d
(k)
1→1.5 := d

(k+1)
1→1.5 ◦ δ(k). (6)

For the other direction d
(k)
2→1.5, we use the inverse of the deformation update

(
δ(k)

)−1

which can be obtained simply by reversing z
(k)
1 and z

(k)
2 in Equation 5 (see Figure 3):

d
(k)
2→1.5 = d

(k+1)
2→1.5 ◦

(
δ(k)

)−1
. (7)

The inverses
(
d
(k)
1→1.5

)−1
and

(
d
(k)
2→1.5

)−1
are updated similarly.

The full registration architecture is then defined by the functions f1→2 and f2→1 which
compose the half-way deformations from stage k = 0:

f1→2(xA, xB) := d
(0)
1→1.5 ◦

(
d
(0)
2→1.5

)−1
and f2→1(xA, xB) := d

(0)
2→1.5 ◦

(
d
(0)
1→1.5

)−1
. (8)

Note that d
(0)
1→1.5, d

(0)
2→1.5, and their inverses are functions of xA and xB through the features

h(k)(xA), h
(k)(xB) in Equation 4, but the dependence is suppressed in the notation for

clarity.

By using half-way deformations at each stage, we avoid the problem with full defor-
mations of having to select either of the image coordinates to which to deform the feature
representations of the next stage, breaking the symmetry of the architecture. Now we can
instead deform the feature representations of both inputs by the symmetrically predicted
half-way deformations, which ensures that the updated deformations after each stage are
separately invariant to input order.

3.3 Implicit deformation inversion layer

Implementing the architecture requires inverting deformations from u(k) in Equation 5. This
could be done, e.g., with the SVF framework, but we propose an approach which requires
storing ≈ 5 times less data for the backward pass than the standard SVF. The memory
saving is significant due to the high memory consumption of volumetric data, allowing larger
images to be registered. During each forward pass 2×(K−1) inversions are required. More
details are provided in Appendix E.

As shown by Chen et al. (2008), deformations can be inverted in certain cases by a
fixed point iteration. Consequently, we propose to use the deep equilibrium network frame-
work from Section 2.5 for inverting deformations, and label the resulting layer deformation
inversion layer. The fixed point equation proposed by Chen et al. (2008) is

g(z, a) := −(a− I) ◦ z + I,
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Deformation inversion layer

Composition (red half-circle on left side) 

Figure 3: Recursive multi-resolution deformation update. The deformation update
at resolution k, described in Section 3.2, takes as input the half-way deforma-

tions d
(k+1)
1→1.5 and d

(k+1)
2→1.5 from the previous resolution, and updates them through

a composition with an update deformation δ(k). The update deformation δ(k) is

calculated symmetrically from image features z
(k)
1 and z

(k)
2 (deformed mid-way

towards each other with the previous half-way deformations) using a neural net-
work u(k) according to Equation 5. The deformation inversion layer for inverting
auxiliary deformations predicted by u(k) is described in Section 3.3.

where a is the deformation to be inverted, z is the candidate for the inverse of a, and I is
the identity deformation. It is easy to see that substituting a−1 for z, yields a−1 as output.
We use Anderson acceleration (Walker and Ni, 2011) for solving the fixed point equation
and use the memory-effecient back-propagation (Bai et al., 2019; Duvenaud et al., 2020)
strategy discussed in Section 2.5.

Lipschitz condition is sufficient for the fixed point algorithm to converge (Chen et al.,
2008), and we ensure that the predicted deformations fulfill the condition (see Section 3.4).
The iteration converges well also in practice as shown in Appendix G.

3.4 Topology preserving deformation prediction networks

Each u(k) predicts a deformation based on the features z
(k)
1 and z

(k)
2 and we define the

networks u(k) as CNNs predicting cubic spline control point grid in the resolution of the

features z
(k)
1 and z

(k)
2 . The cubic spine control point grid can then be used to generate

the displacement field representing the deformation. The use of cubic spline control point
grid for representing deformations is a well-known strategy in image registration, see e.g.
(Rueckert et al., 2006; De Vos et al., 2019).

The deformations generated by u(k) have to be invertible to ensure the topology preser-
vation property, and particularly invertible by the deformation inversion layer. To ensure
that, we limit the control point absolute values below a hard constraint γ(k) using a scaled
Tanh function.

In more detail, each u(k) consists of the following sequential steps:
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1. Concatenation of the two inputs, z
(k)
1 and z

(k)
2 , along the channel dimension. Before

concatenation we reparametrize the features as z
(k)
1 − z

(k)
2 and z

(k)
1 + z

(k)
2 as suggested

by Young et al. (2022).

2. Any number of spatial resolution preserving (stride = 1 and padding = same) con-
volutions with an activation after each of the convolutions except the final one. The
number of output channels of the final convolutions should equal the dimensionality
(3 in our experiments).

3. γ(k) × Tanh function

4. Cubic spline upsampling to the image resolution by interpreting the output of the
step 3 as cubic spline control point grid, similarly to e.g. De Vos et al. (2019).
Cubic spline upsampling can be effeciently implemented as one dimensional transposed
convolutions along each axis.

As shown in Appendix D, the optimal upper bound for γ(k) ensuring invertibility by the
deformation inversion layer but also in general, can be obtained by the formula γ(k) < 1

Kk
n

where

K(k)
n := max

x∈X

∑

α∈Zn

∣∣∣∣∣∣

n∑

j=1

B(xj +
1
2k

− αj)−B(xj − αj)

1/2k

∏

i∈N\{j}

B(xi − αi)

∣∣∣∣∣∣
, (9)

n is the dimensionality of the images (in this work n = 3), X := {1
2 +

1
2k+1 +

i
2k

| i ∈ Z}n ∩
[0, 1]n are the relative sampling positions used in cubic spline upsampling (imlementation
detail), and B is a centered cardinal cubic B-spline (symmetric function with finite support).
In practice we define γ(k) := 0.99× 1

K
(k)
n

.

The formula can be evaluated exactly for dimensions n = 2, 3 for any practical number
of resolution levels (for concrete values, see Table 16 in Appendix D). Note that the outer
sum over Zn is finite since B has a finite support and hence only a finite number of terms
are non-zero.

The strategy of limiting the absolute values of cubic spline control points to ensure
invertibility is similar to the one taken by Rueckert et al. (2006) based on the proof by Choi
and Lee (2000). However, our mathematical proof additionally covers the convergence by
the deformation inversion layer, and provides an exact bound even in our discretised setting
(see Appendix D for more details).

3.5 Theoretical properties

Theorem 1 The proposed architecture is inverse consistent by construction.

Theorem 2 The proposed architecture is symmetric by construction.

Theorem 3 The proposed architecture is topology preserving.

Proof Appendix C, including discussion on numerical errors caused by limited sampling
resolution.
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3.6 Training and implementation

We train the model in an unsupervised end-to-end manner similarly to most other unsu-
pervised registration methods, by using similarity and deformation regularization losses.
The similarity loss encourages deformed images to be similar to the target images, and
the regularity loss encourages desirable properties, such as smoothness, on the predicted
deformations. For similarity we use local normalized cross-correlation with window width 7
and for regularization we use L2 penalty on the gradients of the displacement fields, identi-
cally to VoxelMorph (Balakrishnan et al., 2019). We apply the losses in both directions to
maintain symmetry. One could apply the losses in the intermediate coordinates and avoid
building the full deformations during training. The final loss is:

L = NCC(xA ◦ d1→2, xB) +NCC(xA, xB ◦ d2→1) + λ× [Grad(d1→2) + Grad(d2→1)] , (10)

where d1→2 := f1→2(xA, xB), d2→1 := f2→1(xA, xB), NCC the local normalized cross-
correlation loss, Grad the L2 penalty on the gradients of the displacement fields, and λ is
the regularization weight. For details on hyperparameter selection, see Appendix A. Our
implementation is in PyTorch (Paszke et al., 2019), and is available at https://github.

com/honkamj/SITReg. Evaluation methods and preprocessing done by us, see Section 4,
are included.

3.7 Inference

We consider two variants: Standard: The final deformation is formed by iteratively resam-
pling at each image resolution (common approach). Complete: All individual deformations
(outputs of u(k)) are stored in memory and the final deformation is their true composition.
The latter is included only to demonstrate that the deformation is everywhere invertible
(no negative determinants) without numerical sampling errors, but the first one is used un-
less stated otherwise, and perfect invertibility is not necessary in practice. Due to limited
sampling resolution even the existing ”diffeomorphic” registration frameworks such as SVF
do not usually achieve perfect invertibility.

4. Experimental setup

We evaluate our method on subject-to-subject registration of brain MRI images.

4.1 Datasets

We evaluate our method on two tasks: subject-to-subject registration of brain images and
on inspiration-exhale registration of lung CT scans. The latter is considered challenging for
deep learning methods, and classical optimization based methods remain state-of-the-art
(Falta et al., 2024).

We use two subject-to-subject registration datasets and evaluate on both of them sepa-
rately: OASIS brains dataset with 414 T1-weighted brain MRI images (Marcus et al., 2007)
as pre-processed for Learn2Reg challenge (Hoopes et al., 2021; Hering et al., 2022) 1 , and

1. https://www.oasis-brains.org/#access
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LPBA40 dataset from University of California Laboratory of Neuro Imaging (USC LONI)
with 40 brain MRI images (Shattuck et al., 2008) 2

Pre-processing for both brain subject-to-subject datasets includes bias field correction,
normalization, and cropping. For OASIS dataset we use affinely pre-aligned images and
for LPBA40 dataset we use rigidly pre-aligned images. Additionally we train the models
without any pre-alignment on OASIS data (OASIS raw) to compare the methods with
larger initial displacements. We crop the images in affinely pre-aligned OASIS dataset to
144× 192× 160 resolution and in LPBA40 dataset to 160× 192× 160 resolution. Images in
raw OASIS dataset have resolution 256× 256× 256 and we do not crop the images. Voxel
sizes of the affinely aligned and raw datasets are the same. We split the OASIS dataset
into 255, 20 and 139 images for training, validation, and testing. The split differs from the
Learn2Reg challenge since the test set is not available, but sizes correspond to the splits
used by Mok and Chung (2020a,b, 2021). We used all image pairs for testing and validation,
yielding 9591 test and 190 validation pairs. LPBA40 dataset is much smaller and we split
it into 25, 5 and 10 images for training, validation, and testing. This leaves us with 10 pairs
for validation and 45 for testing.

For inspiration-exhale registration of lung CT scans we use a recently published Lung250M-
4B dataset by Falta et al. (2024). The dataset is based on multiple earlier datasets: DIR-
LAB COPDgene (Castillo et al., 2013), EMPIRE10 (Murphy et al., 2011), L2R-LungCT
dataset from Learn2reg challenge (Hering et al., 2022), The National Lung Screening Trial
(NLST) dataset (NLST Research Team, 2011, 2013; Clark et al., 2013), TCIA-Ventilation
dataset (Clark et al., 2013; Eslick et al., 2018, 2022), and TCIA-NSCLC dataset (Clark
et al., 2013; Hugo et al., 2016, 2017; Balik et al., 2013; Roman et al., 2012). In total the
dataset has 97, 18, and 9 pairs for training, testing, and validation. However, we can not
use 12 image pairs from EMPIRE10 dataset due terms of use, 10 of which are part of the
training set, and 2 of which are part of the validation set. The test set is not affected.
For evaluation the data set includes manually placed landmarks on the validation and the
test image pairs. In addition, the dataset contains automatically generated landmarks for
training pairs but we want to stay in the unsupervised setting and do not use those for
training. We use lung masked images for training, and downsample them to isotropic 2 mm
resolution, normalize and clip them to range [−1024, 0], and crop the volumes to the shape
of 160× 112× 160.

4.2 Evaluation metrics

We evaluate brain subject-to-subject registration accuracy using segmentations of brain
structures included in the datasets: (35 structures for OASIS and 56 for LPBA40), and two
metrics: Dice score (Dice) and 95% quantile of the Hausdorff distances (HD95), similarly to
Learn2Reg challenge (Hering et al., 2022). Dice score measures the overlap of the segmen-
tations of source images deformed by the method and the segmentations of target images,
and HD95 measures the distance between the surfaces of the segmentations.

For evaluating the inspiration-exhale registration of lung CT scans we use mean distance
between landmark pairs after registration, denoted as target registration error (TRE). How-
ever, comparing methods only based on the overlap of anatomic regions or landmarks is

2. https://resource.loni.usc.edu/resources/atlases/license-agreement/
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insufficient (Pluim et al., 2016; Rohlfing, 2011), and hence also deformation regularity should
be measured, for which we use conventional metrics based on the local Jacobian determi-
nants at 106 sampled locations in each volume. The local derivatives were estimated via
small perturbations of 10−7 voxels. We measure topology preservation as the proportion
of the locations with a negative determinant (% of |Jϕ|≤0), and deformation smoothness as
the standard deviation of the determinant (std(|Jϕ|)). Additionally we report inverse and
cycle consistency errors, see Section 1.

4.3 Baseline methods

We compare against VoxelMorph (Balakrishnan et al., 2019), SYMNet (Mok and Chung,
2020a), conditional LapIRN (cLapIRN ) (Mok and Chung, 2020b, 2021), and ByConstruc-
tionICON (Greer et al., 2023). VoxelMorph is a standard baseline in deep learning based
unsupervised registration. With SYMNet we are interested in how well our method pre-
serves topology and how accurate the generated inverse deformations are compared to the
SVF based methods. Additionally, since SYMNet is symmetric from the loss point of view,
it is interesting to see how symmetric predictions it produces in practice. cLapIRN was
the best method on OASIS dataset in Learn2Reg 2021 challenge (Hering et al., 2022). By-
ConstructionICON is a parallel work to ours developing a multi-step inverse consistent,
symmetric, and topology preserving deep learning registration method based on SVF for-
mulation. We used the official implementations3456 adjusted to our datasets. SYMNet uses
anti-folding loss to penalize negative determinant. Since this loss is a separate component
that could be easily used with any method, we also train SYMNet without it, denoted
SYMNet (simple) for two of our four datasets. This provides a comparison on how well the
vanilla SVF framework can generate invertible deformations in comparison to our method.
For details on hyperparameter selection for baseline models, see Appendix B.

4.4 Ablation study

To study the usefulness of the symmetric formulation introduced in Section 3.1, we also
conduct the experiments without it while keeping the architecture otherwise identical. In
more detail, we change Equation 5 into the following form:

δ(k) := u(k)(z
(k)
1 , z

(k)
2 ) ◦ u(k)(z(k)1 , z

(k)
2 ). (11)

For the inverse update (not necessarily inverse anymore despite the notation) we then simply
use (

δ(k)
)−1

:= u(k)(z
(k)
2 , z

(k)
1 ) ◦ u(k)(z(k)2 , z

(k)
1 ). (12)

The resulting architecture is still topology preserving but no longer inverse or cycle consis-
tent by construction. We refer to the architecture as SITReg (non-sym)

3. https://github.com/voxelmorph/voxelmorph
4. https://github.com/cwmok/Fast-Symmetric-Diffeomorphic-Image-Registration-with-Convolutional-

Neural-Networks
5. https://github.com/cwmok/Conditional LapIRN/
6. https://github.com/uncbiag/ByConstructionICON/
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5. Results

Evaluation results for the affinely pre-aligned OASIS dataset are shown in Table 1, the
OASIS raw dataset in Table 2., the LPBA40 dataset in Table 3, and for the Lung250M-
4B dataset in Table 4. Figure 4 visualizes differences in deformation regularity on OASIS
dataset, and additional visualizations are available in Appendix H. A comparison of the
methods’ inference time efficiencies on OASIS dataset are shown in Table 5.

Table 1: Results, OASIS dataset. Mean and standard deviation of each metric are com-
puted on the test set. The percentage of folding voxels (% of |Jϕ|≤0) from the
complete SITReg version is shown in blue, other results are with the standard
version (see Section 3.7). VoxelMorph and cLapIRN do not predict inverse defor-
mations and hence the inverse-consistency error is not shown.

Accuracy Deformation regularity Consistency

Model Dice ↑ HD95 ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

SYMNet (original) 0.788(0.029) 2.15(0.57) 1.5e−3(4.3e−4) 0.44(0.039) 3.0e−1(2.9e−2) 3.5e−3(4.2e−4)
SYMNet (simple) 0.787(0.029) 2.17(0.58) 1.5e−2(3.1e−3) 0.46(0.045) 2.8e−1(2.8e−2) 5.2e−3(8.4e−4)
VoxelMorph 0.803(0.031) 2.08(0.57) 1.4e−1(9.4e−2) 0.49(0.032) 4.5e−1(5.3e−2) -
cLapIRN 0.812(0.027) 1.93(0.50) 1.1e0(2.1e−1) 0.55(0.032) 1.2e0(1.6e−1) -
ByConstructionICON 0.813(0.022) 1.83(0.42) 2.3e−2(6.4e−3) 0.48(0.069) 5.3e−3(1.5e−3) 5.3e−3(1.5e−3)

SITReg 0.818(0.025)∗ 1.84(0.45) 8.1e−3(1.6e−3)/0(0) 0.45(0.038) 5.5e−3(6.9e−4) 5.5e−3(6.9e−4)
SITReg (non-sym) 0.819(0.024)∗ 1.82(0.44) 1.7e−2(4.5e−3) 0.50(0.037) 1.2e−1(1.4e−2) 1.2e−1(1.4e−2)

∗ Statistically significant (p < 0.05) improvement compared to the baselines, for details see Appendix I.

Table 2: Results, OASIS raw dataset. The results are interpreted similarly to Table
1. SYMNet and VoxelMorph did not converge to anything meaningful due to the
large initial displacement.

Accuracy Deformation regularity Consistency

Model Dice ↑ HD95 ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

SYMNet 0.176(0.14) 19.7(10.) 1.8e−4(1.8e−4) 0.24(0.031) 3.6e−1(1.4e−1) 7.2e−4(2.1e−4)
VoxelMorph 0.230(0.19) 19.4(11.) 9.2e−2(4.5e−2) 0.26(0.019) 4.0e0(2.3e0) -
cLapIRN 0.744(0.073) 3.14(1.9) 5.8e−1(1.4e−1) 0.38(0.045) 3.0e0(2.1e0) -
ByConstructionICON 0.803(0.023) 1.83(0.55) 3.3e−3(2.0e−3) 0.21(0.045) 1.1e−3(6.1e−4) 1.1e−3(6.1e−4)

SITReg 0.813(0.023)∗ 1.80(0.52)∗ 1.0e−3(3.9e−4)/0(0) 0.20(0.031) 1.3e−3(3.2e−4) 1.3e−3(3.2e−4)

∗ Statistically significant (p < 0.05) improvement compared to the baselines, for details see Appendix I.
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Table 3: Results, LPBA40 dataset. The results are interpreted similarly to Table 1.

Accuracy Deformation regularity Consistency

Model Dice ↑ HD95 ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

SYMNet (original) 0.669(0.033) 6.79(0.70) 1.1e−3(4.6e−4) 0.35(0.050) 2.7e−1(6.1e−2) 2.1e−3(4.3e−4)
SYMNet (simple) 0.664(0.034) 6.88(0.73) 4.7e−3(1.6e−3) 0.37(0.053) 2.8e−1(5.8e−2) 2.9e−3(6.7e−4)
VoxelMorph 0.676(0.032) 6.72(0.68) 2.2e−1(2.1e−1) 0.35(0.040) 3.1e−1(1.1e−1) -
cLapIRN 0.714(0.019) 5.93(0.43) 8.4e−2(2.9e−2) 0.27(0.020) 5.6e−1(1.8e−1) -
ByConstructionICON 0.674(0.031) 6.60(0.71) 4.7e−3(2.9e−3) 0.33(0.41) 1.6e−3(6.6e−4) 1.6e−3(6.6e−4)

SITReg 0.720(0.017)∗ 5.88(0.43) 2.4e−3(6.4e−4)/0(0) 0.31(0.032) 2.6e−3(4.2e−4) 2.6e−3(4.2e−4)
SITReg (non-sym) 0.697(0.024) 6.29(0.57) 1.2e−3(5.6e−4) 0.34(0.033) 2.2e−1(3.2e−2) 2.2e−1(3.2e−2)

∗ Statistically significant (p < 0.05) improvement compared to the baselines, for details see Appendix I.

Table 4: Results, Lung250M-4B dataset. The results are interpreted similarly to Table
1. Note that TRE is computed in the inhale coordinates in contrast to the exhale
coordinates used in the paper by Falta et al. (2024). In the inhale coordinates our
method obtains TRE=2.27.

Deformation regularity Consistency

Model TRE ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

SYMNet 8.25(2.1) 0.0e0(0.0e0) 0.32(0.093) 5.3e−1(2.2e−1) 3.6e−4(1.7e−4)
VoxelMorph 6.66(1.9) 1.2e0(5.9e−1) 0.39(0.090) 1.1e1(6.5e0) -
cLapIRN 5.34(1.9) 4.9e−3(6.5e−3) 0.25(0.071) 5.9e0(3.7e0) -
ByConstructionICON 8.63(3.1) 0.0e0(0.0e0) 0.19(0.054) 4.8e−5(2.8e−5) 4.8e−5(2.8e−5)

SITReg 2.71(0.93)∗ 4.0e−5(6.6e−5)/0(0) 0.30(0.084) 1.2e−3(4.5e−4) 1.2e−3(4.5e−4)
SITReg (non-sym) 4.98(2.3) 0.0e0(0.0e0) 0.32(0.088) 4.6e−1(2.8e−1) 4.6e−1(2.8e−1)

∗ Statistically significant (p < 0.05) improvement compared to the baselines, for details see Appendix I.

Table 5: Computational efficiency, OASIS dataset. Mean and standard deviation are
shown. Inference time and memory usage were measured on NVIDIA GeForce
RTX 3090.

Model Inference Time (s) ↓ Inference Memory (GB) ↓ # parameters (M) ↓

SYMNet 0.095(0.00052) 1.9 0.9
VoxelMorph 0.16(0.0010) 5.6 1.3
cLapIRN 0.10(0.00052) 4.1 1.2
ByConstrictionICON 0.32(0.0022) 2.4 45.1

SITReg 0.37(0.0057) 3.4 1.2
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SITReg ByConstructionICON cLapIRN SYMNet (original) VoxelMorph

10−2

10−1

100

101

Figure 4: Visual deformation regularity comparison. Local Jacobian determinants
are visualized for each model for a single predicted deformation in OASIS ex-
periment. Folding voxels (determinant below zero) are marked with black color.
Only one axial slice of the predicted 3D deformation is visible.

6. Discussion

Evaluation of registration algorithms is difficult due to lack of ground truth (Pluim et al.,
2016). In particular, the assessment of registration performance should not be based only
on a tissue overlap score since a clearly unrealistic and wrong deformation could still have
a good tissue overlap score (an extreme example is presented by Rohlfing (2011)). For
that reason, usually also deformation regularity is measured. However, that introduces
further difficulties for evaluation because of the trade-off invoked by the regularization
hyperparameter (in our case λ) between the tissue overlap and deformation regularity, which
can change the ranking of the methods for different metrics. For that reason one should look
at the overall performance across the regularity and accuracy metrics (see e.g. Learn2reg
challenge (Hering et al., 2022)). We further evaluate using the consistency metrics as is
often done in the literature (Holden et al., 2000; Pluim et al., 2016).

In a such overall comparison over all four datasets, our method performs clearly the
best. In more detail:

• VoxelMorph: Our method outperforms it on every metric in every experiment.

• SYMNet: While SYMNet (original) has in general slightly better deformation reg-
ularity (compared to our standard inference variant), our method has a significantly
better dice score or TRE. By increasing regularization one could make our model to
have better regularity while still maintaining significantly better dice score or TRE
than SYMNet. This is demonstrated for validation set results in Tables 6, 7, and 8 in
Appendix A. In other words, our method has significantly better overall performance.

• cLapIRN: Our method outperforms cLapIRN on all four datasets. On OASIS raw
and Lung250M-4B datasets our method outperforms cLapIRN clearly. On the pre-
aligned OASIS and LPBA40 datasets our method has only slightly better tissue over-
lap performance than cLapIRN, but has clearly superior deformation regularity in
terms of folding voxels.

• ByConstructionICON: On the OASIS datasets ByCounstrictionICON performs
similarily to our method, although slightly worse on the OASIS raw dataset. How-
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ever, on the smaller LPBA40 and Lung250M-4B datasets the performance of our
method is clearly better, suggesting that our method generalizes from less data than
ByConstructionICON.

For the Lung250M-4B dataset the test set is standardized, and we can compare the
results to the methods benchmarked in the paper (Falta et al., 2024). However, our metrics
are computed in the coordinates of the inhale image whereas the paper uses coordinates of
the exhale image. In the exhale coordinates our method obtains TRE = 2.27 which is very
competitive, clearly outperforming the best deep learning method VoxelMorph++ without
instance optimization (TRE = 4.47) trained using additional landmark supervision unlike
our unsupervised method. VoxelMorph++ with instance optimization obtains TRE = 2.26.

6.1 Ablation study

Based on the ablation study, the symmetric formulation helps especially on the smaller
LPBA40 and Lung250M-4B datasets. On the larger OASIS dataset the performance on
tissue overlap metrics is similar but even there is a slight improvement in terms of defor-
mation regularity. The result is in line with the common machine learning wisdom that
incorporating inductive bias into models has more relevance when the training set is small.

6.2 Computational performance

Inference time of our method is slightly larger than that of the compared methods, but
unlike VoxelMorph and cLapIRN, it produces deformations in both directions immediately.
Also, half a second runtime is still very fast and restrictive only in the most time-critical
use cases. In terms of inference memory usage our method is competitive.

7. Conclusions

We proposed a novel image registration architecture inbuilt with the desirable properties
of symmetry, inverse consistency, and topology preservation. The multi-resolution formula-
tion was capable of accurately registering images even with large intial misalignments. As
part of our method, we developed a new neural network component deformation inversion
layer. The model is easily end-to-end trainable and does not require tedious multi-stage
training strategies. In the experiments the method demonstrates state-of-the-art registra-
tion performance. The main limitation is somewhat heavier computational cost than other
methods.
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Appendix A. Hyperparameter selection details

We experimented on validation set with different hyperparameters during the development.
While the final results on test set are computed only for one chosen configuration, the results
on validation set might still be of interest for the reader. Results of these experiments for
the pre-aligned OASIS dataset are shown in Table 6, for the LPBA40 dataset in Table 7,
and for the Lung250M-4B dataset in Table 8.

For the OASIS raw dataset without pre-alignment we used 6 resolution levels, together
with an affine transformation prediction stage before the other deformation updates. We
omitted the predicted affine transformation from the deformation regularization. The same
regularization weight was used as for the pre-aligned OASIS dataset.

Table 6: Hyperparameter optimization results for our method calculated on the OASIS
validation set. The chosen configuration was λ = 1.0, and K = 4. HD95 metric is
not included due to relatively high computational cost.

Hyperparameters Accuracy Deformation regularity Consistency

λ K Dice ↑ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

1.0 5 0.822(0.035) 9.1e−3(1.7e−3) 0.45(0.027) 5.7e−3(6.0e−4) 5.7e−3(6.0e−4)
1.5 5 0.818(0.034) 1.9e−3(5.1e−4) 0.40(0.023) 3.7e−3(3.4e−4) 3.7e−3(3.4e−4)
2.0 5 0.815(0.035) 3.7e−4(2.0e−4) 0.37(0.021) 2.6e−3(2.1e−4) 2.6e−3(2.1e−4)
1.0 4 0.822(0.034) 8.2e−3(1.5e−3) 0.44(0.028) 5.5e−3(5.6e−4) 5.5e−3(5.6e−4)
1.5 4 0.819(0.035) 2.1e−3(5.8e−4) 0.40(0.023) 3.4e−3(3.3e−4) 3.4e−3(3.3e−4)
2.0 4 0.815(0.036) 3.6e−4(2.1e−4) 0.37(0.020) 2.6e−3(2.2e−4) 2.6e−3(2.2e−4)

Table 7: Hyperparameter optimization results for our method calculated on the LPBA40
validation set. The chosen configuration was λ = 1.0, K = 7, and Affine = No.

Hyperparameters Accuracy Deformation regularity Consistency

λ K Affine Dice ↑ HD95 ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

1.0 4 No 0.710(0.015) 6.10(0.46) 2.5e−3(8.7e−4) 0.31(0.020) 2.5e−3(3.5e−4) 2.5e−3(3.5e−4)
1.0 5 No 0.720(0.014) 5.83(0.36) 1.7e−3(5.7e−4) 0.30(0.019) 2.3e−3(3.1e−4) 2.3e−3(3.1e−4)
1.0 6 No 0.725(0.012) 5.70(0.31) 2.1e−3(4.8e−4) 0.29(0.019) 2.3e−3(3.0e−4) 2.3e−3(3.0e−4)
1.0 7 No 0.726(0.011) 5.69(0.30) 1.9e−3(5.3e−4) 0.29(0.019) 2.3e−3(3.1e−4) 2.3e−3(3.1e−4)
1.0 5 Yes 0.719(0.014) 5.86(0.35) 2.2e−3(7.2e−4) 0.30(0.019) 2.4e−3(3.3e−4) 2.4e−3(3.3e−4)
1.0 6 Yes 0.721(0.015) 5.78(0.37) 2.6e−3(5.8e−4) 0.30(0.019) 2.4e−3(3.2e−4) 2.4e−3(3.2e−4)
2.0 4 No 0.703(0.018) 6.20(0.50) 5.0e−5(8.1e−5) 0.25(0.017) 1.2e−3(1.5e−4) 1.2e−3(1.5e−4)
2.0 5 No 0.718(0.014) 5.84(0.35) 6.5e−5(7.9e−5) 0.25(0.016) 1.1e−3(1.5e−4) 1.1e−3(1.5e−4)
2.0 6 No 0.722(0.012) 5.76(0.30) 5.0e−5(7.4e−5) 0.24(0.016) 1.1e−3(1.5e−4) 1.1e−3(1.5e−4)
2.0 7 No 0.721(0.012) 5.77(0.30) 4.0e−5(5.8e−5) 0.25(0.016) 1.2e−3(1.5e−4) 1.2e−3(1.5e−4)
2.0 5 Yes 0.715(0.014) 5.95(0.40) 4.0e−5(8.6e−5) 0.24(0.016) 1.1e−3(1.4e−4) 1.1e−3(1.4e−4)
2.0 6 Yes 0.721(0.014) 5.77(0.34) 5.0e−5(7.4e−5) 0.25(0.017) 1.1e−3(1.4e−4) 1.1e−3(1.4e−4)
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Table 8: Hyperparameter optimization results for our method calculated on the Lung250M-
4b validation set. The chosen configuration was λ = 1.0, K = 6.

Hyperparameters Accuracy Deformation regularity Consistency

λ K TRE ↓ % of |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

1.0 5 3.05(0.84) 1.2e−5(4.1e−5) 0.21(0.11) 1.1e−2(4.1e−3) 1.1e−2(4.1e−3)
1.0 6 2.77(0.65) 6.2e−6(2.4e−5) 0.20(0.11) 9.0e−3(3.1e−3) 9.0e−3(3.1e−3)
2.0 6 2.84(0.68) 0.0e0(0.0e0) 0.18(0.088) 7.0e−3(1.9e−3) 7.0e−3(1.9e−3)

Appendix B. Hyperparameter selection details for baselines

For cLapIRN baseline we used the regularization parameter value λ = 0.05 for the OASIS
datasets, value λ = 0.1 for the LPBA40 dataset, and λ = 0.01 for the Lung250M-4b dataset
where λ is used as in the paper presenting the method (Mok and Chung, 2021). The values
were chosen based on the validation set results shown in Tables 9, 10, 11, and 12.

For ByConstructionICON baseline we used regularization parameter λ = 0.5 for the
OASIS datasets, λ = 1.0 for the LPBA40 dataset, and λ = 5.0 for the Lung250M-4B
dataset. The values were chosen based on the validation set results shown in Tables 13, 14,
and 15.

We trained VoxelMorph with losses and regularization weight identical to our method
and for SYMNet we used hyperparameters directly provided by Mok and Chung (2020a).
We used the default number of convolution features for the baselines except for VoxelMorph
we doubled the number of features, as that was suggested in the paper (Balakrishnan et al.,
2019).

Table 9: Regularization parameter optimization results for cLapIRN calculated on the pre-
aligned OASIS validation set. Here λ refers to the normalized regularization weight
of the gradient loss of cLapIRN and should be in range [0, 1]. Value λ = 0.05 was
chosen. HD95 metric is not included due to relatively high computational cost.

Hyperparameters Accuracy Deformation regularity Consistency

λ Dice ↑ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓

0.01 0.812(0.034) 2.5e0(2.9e−1) 0.82(0.048) 1.7e0(1.5e−1)
0.05 0.817(0.034) 1.1e0(1.8e−1) 0.56(0.029) 1.2e0(1.3e−1)
0.1 0.812(0.035) 4.2e−1(1.1e−1) 0.43(0.020) 8.9e−1(1.1e−1)
0.2 0.798(0.038) 7.2e−2(3.9e−2) 0.30(0.013) 6.0e−1(8.3e−2)
0.4 0.769(0.042) 1.4e−3(1.7e−3) 0.18(0.0087) 3.5e−1(4.4e−2)
0.8 0.727(0.049) 3.4e−6(2.2e−5) 0.10(0.0050) 2.5e−1(3.8e−2)
1.0 0.711(0.052) 1.3e−6(1.7e−5) 0.082(0.0042) 2.3e−1(3.8e−2)
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Table 10: Regularization parameter optimization results for cLapIRN calculated on the
OASIS raw validation set. The table is interpreted similarly to Table 9. Value
λ = 0.05 was chosen since it resulted in clearly the highest Dice score. HD95
metric is not included due to relatively high computational cost.

Hyperparameters Accuracy Deformation regularity Consistency

λ Dice ↑ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓

0.01 0.736(0.11) 4.9e−1(1.3e−1) 0.36(0.040) 3.1e0(1.9e0)
0.02 0.738(0.11) 5.1e−1(1.3e−1) 0.36(0.038) 3.2e0(2.2e0)
0.05 0.740(0.11) 2.9e−1(8.0e−2) 0.28(0.028) 2.9e0(2.1e0)
0.1 0.733(0.12) 9.7e−2(3.4e−2) 0.21(0.019) 2.6e0(2.1e0)

Table 11: Regularization parameter optimization results for cLapIRN calculated on the
LPBA40 validation set. The table is interpreted similarly to Table 9. Value
λ = 0.1 was chosen due to the best overall performance.

Hyperparameters Accuracy Deformation regularity Consistency

λ Dice ↑ HD95 ↓ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓

0.01 0.714(0.014) 9.9e−1(1.5e−1) 0.45(0.029) 0.45(0.029) 9.9e−1(2.2e−1)
0.05 0.715(0.014) 3.2e−1(6.8e−2) 0.33(0.018) 0.33(0.018) 8.0e−1(2.1e−1)
0.1 0.714(0.014) 7.4e−2(2.4e−2) 0.25(0.012) 0.25(0.012) 6.6e−1(2.1e−1)
0.2 0.709(0.015) 4.4e−3(2.4e−3) 0.19(0.0090) 0.19(0.0090) 4.9e−1(1.9e−1)
0.4 0.698(0.017) 3.5e−5(5.7e−5) 0.13(0.0071) 0.13(0.0071) 3.6e−1(1.9e−1)
0.8 0.678(0.019) 5.0e−6(2.2e−5) 0.085(0.0062) 0.085(0.0062) 3.0e−1(1.9e−1)
1.0 0.671(0.021) 5.0e−6(2.2e−5) 0.074(0.0061) 0.074(0.0061) 3.0e−1(1.9e−1)

Table 12: Regularization parameter optimization results for cLapIRN calculated on the
Lung250M-4B validation set. The table is interpreted similarly to Table 9. Value
λ = 0.01 was chosen due to the best overall performance.

Hyperparameters Accuracy Deformation regularity Consistency

λ TRE ↓ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓

0.01 4.33(1.5) 1.7e−3(2.1e−3) 0.20(0.078) 5.8e0(6.0e0)
0.05 4.35(1.6) 1.4e−3(1.7e−3) 0.19(0.073) 5.8e0(6.3e0)
0.1 4.41(1.7) 8.9e−4(1.2e−3) 0.18(0.066) 5.9e0(6.8e0)
0.2 4.67(2.1) 3.9e−4(5.9e−4) 0.17(0.055) 6.1e0(8.1e0)
0.4 5.51(3.6) 1.5e−4(2.9e−4) 0.14(0.039) 6.9e0(1.1e1)
0.8 7.00(5.7) 1.1e−4(2.1e−4) 0.13(0.025) 3.7e0(3.6e0)
1.0 7.39(5.9) 7.3e−5(2.0e−4) 0.12(0.022) 3.0e0(1.7e0)
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Table 13: Regularization parameter optimization results for ByConstructionICON calcu-
lated on the pre-aligned OASIS validation set. Here λ refers to the weight of the
regularizing bending energy loss used by the method. Value λ = 0.5 was chosen
due to the best performance (the paper (Greer et al., 2023) used λ = 5.0 for the
OASIS dataset which we found to be suboptimal). HD95 metric is not included
due to relatively high computational cost.

Hyperparameters Accuracy Deformation regularity Consistency

λ Dice ↑ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

0.5 0.818(0.031) 2.5e−2(6.1e−3) 0.48(0.045) 5.4e−3(1.0e−3) 5.4e−3(1.0e−3)
1.0 0.815(0.031) 6.6e−3(2.3e−3) 0.43(0.036) 2.8e−3(4.9e−4) 2.8e−3(4.9e−4)
5.0 0.796(0.033) 3.9e−6(2.1e−5) 0.29(0.021) 4.1e−4(5.0e−5) 4.1e−4(5.0e−5)

Table 14: Regularization parameter optimization results for ByConstructionICON calcu-
lated on the LPBA40 validation set. The table is interpreted similarly to Table
13. Value λ = 1.0 was chosen due to the best overall performance. HD95 metric
is not included due to relatively high computational cost.

Hyperparameters Accuracy Deformation regularity Consistency

λ Dice ↑ HD95 ↓ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

0.5 0.686(0.020) 6.23(0.46) 2.8e−2(1.2e−2) 0.34(0.042) 3.9e−3(1.1e−3) 3.9e−3(1.1e−3)
1.0 0.684(0.018) 6.30(0.48) 3.0e−3(2.0e−3) 0.27(0.025) 1.2e−3(2.5e−4) 1.2e−3(2.5e−4)

Table 15: Regularization parameter optimization results for ByConstructionICON calcu-
lated on the Lung250M-4B validation set. The table is interpreted similarly to
Table 13. Value λ = 5.0 was chosen due to the best performance.

Hyperparameters Accuracy Deformation regularity Consistency

λ TRE ↓ |Jϕ|≤0 ↓ std(|Jϕ|) ↓ Cycle ↓ Inverse ↓

0.5 8.76(4.5) 2.6e−3(3.5e−3) 0.32(0.15) 1.2e−3(9.7e−4) 1.2e−3(9.7e−4)
1.0 7.63(4.0) 3.3e−4(9.9e−4) 0.25(0.12) 4.8e−4(4.7e−4) 4.8e−4(4.7e−4)
3.0 6.38(3.9) 0.0e0.0(0.0e0.0) 0.17(0.10) 1.1e−4(8.4e−5) 1.1e−4(8.4e−5)
5.0 6.42(4.1) 0.0e0.0(0.0e0.0) 0.15(0.089) 6.8e−5(5.1e−5) 6.8e−5(5.1e−5)
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Appendix C. Proof of theoretical properties

While in the main text dependence of the intermediate outputs d
(k)
1→1.5, d

(k)
2→1.5, z

(k)
1 , z

(k)
2 ,

and δ(k) on the input images xA, xB is not explicitly written, throughout this proof we
include the dependence in the notation since it is relevant for the proof.

C.1 Inverse consistent by construction (Theorem 1)

Proof Inverse consistency by construction follows directly from Equation 8:

f1→2(xA, xB) = d
(0)
1→1.5(xA, xB) ◦ d

(0)
2→1.5(xA, xB)

−1

=
(
d
(0)
2→1.5(xA, xB) ◦ d

(0)
1→1.5(xA, xB)

−1
)−1

= f2→1(xA, xB)
−1

Note that due to limited sampling resolution the inverse consistency error is not exactly

zero despite of the proof. The same is true for earlier inverse consistent by construction
registration methods, as discussed in Section 1.

To be more specific, sampling resolution puts a limit on the accuracy of the inverses
obtained using deformation inversion layer, and also limits accuracy of compositions if de-
formations are resampled to their original resolution as part of the composition operation
(see Section 3.7). While another possible source could be the fixed point iteration in de-
formation inversion layer converging imperfectly, that can be proven to be insignificant.
As shown by Appendix D, the fixed point iteration is guaranteed to converge, and error
caused by the lack of convergence of fixed point iteration can hence be controlled by the
stopping criterion. In our experiments we used as a stopping criterion maximum inversion
error within all the sampling locations reaching below one hundredth of a voxel, which is
very small.

C.2 Symmetric by construction (Theorem 2)

Proof We use induction. Assume that for any xA and xB at level k + 1 the following

holds: d
(k+1)
1→1.5(xA, xB) = d

(k+1)
2→1.5(xB, xA). For level K it holds trivially since d

(K)
1→1.5(xA, xB)

and d
(K)
2→1.5(xA, xB) are defined as identity deformations. Using the induction assumption

we have at level k:

z
(k)
1 (xA, xB) = h(k)(xA) ◦ d(K)

1→1.5(xA, xB) = h(k)(xA) ◦ d(K)
2→1.5(xB, xA) = z

(k)
2 (xB, xA)

Then also:

δ(k)(xA, xB) = u(k)(z
(k)
1 (xA, xB), z

(k)
2 (xA, xB)) ◦ u(k)(z(k)2 (xA, xB), z

(k)
1 (xA, xB))

−1

= u(k)(z
(k)
2 (xB, xA), z

(k)
1 (xB, xA)) ◦ u(k)(z(k)1 (xB, xA), z

(k)
2 (xB, xA))

−1

=
[
u(k)(z

(k)
1 (xB, xA), z

(k)
2 (xB, xA)) ◦ u(k)(z(k)2 (xB, xA), z

(k)
1 (xB, xA))

−1
]−1

= δ(k)(xB, xA)
−1
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Then we can finalize the induction step:

d
(k)
1→1.5(xA, xB) = d

(k+1)
1→1.5(xA, xB) ◦ δ(k)(xA, xB)

= d
(k+1)
2→1.5(xB, xA) ◦ δ(k)(xB, xA)−1 = d

(k)
2→1.5(xB, xA)

From this follows that the method is symmetric by construction:

f1→2(xA, xB) = d
(0)
1→1.5(xA, xB) ◦ d

(0)
2→1.5(xA, xB)

−1

= d
(0)
2→1.5(xB, xA) ◦ d

(0)
1→1.5(xB, xA)

−1 = f2→1(xB, xA)

The proven relation holds exactly.

C.3 Topology preserving (Theorem 3)

Proof As shown by Appendix D, each u(k) produces topology preserving (everywhere
positive Jacobian determinants) deformations (architecture of u(k) is described in Section
3.4). Since the overall deformation is composition of multiple outputs of u(k) and their
inverses, the whole deformation has also everywhere positive Jacobians since the Jacobian
determinants at each point can be obtained as a product of the Jacobian determinants of
the composed deformations.

The inveritibility is not perfect if the compositions of u(k) and their inverses are resam-
pled to the input image resolution, as is common practice in image registration. However,
invertibility everywhere can be achieved by storing all the individual deformations and eval-
uating the composed deformation as their true composition (see Section 3.7 on inference
variants and the results in Section 5).

Appendix D. Deriving the optimal bound for control points

D.1 Proof summary

As discussed in Section 3.4, we limit absolute values of the predicted cubic spline control
points defining the displacement field by a hard constraint γ(k) for each resolution level
k ∈ {0, . . . ,K − 1}. We want to find optimal γ(k) which ensures invertibility of individual
deformations and convergence of the fixed point iteration in deformation inversion layer.
Note that the proof provides a significantly shorter and more general proof of the theorems
1 and 4 in (Choi and Lee, 2000).

We start by showing the optimal bound in continuous case (infinite resolution), and
then extend it to our discrete case where values between the B-spline samples are defined
by linear interpolation.

The derived continuous bound γ equals the reciprocal of the maximum possible matrix
∞ norm of the local Jacobian matrices over all possible generated displacement fields. The
matrix norm of a local Jacobian matrix equals the local Lipschitz constant and hence the
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bound ensures that the Lipschitz constant with respect to the ∞ norm stays under one,
which by (Chen et al., 2008) guarantees both invertibility and convergence of the fixed point
iteration. However, a straightforward formula for the bound is intractable computationally
in three dimensions, and we simplify it by showing that due to symmetries the absolute
value around the derivatives can be removed from the function being maximixed, yielding
a formula which can be evaluated exactly. We further show with a counter example that
the proposed bound is tight.

The bound equals the bound obtained by (Choi and Lee, 2000) using a very different
approach, further validating the result (their proof does not cover the convergence of the
fixed point iteration and is less general).

Note that the bound ensures positivity of the Jacobians, not only invertibility, since
we are limiting displacements (and zero displacement deformation has trivially positive
Jacobian).

D.2 Proof of the continuous case

By (Chen et al., 2008) a deformation field is invertible by the proposed deformation inversion
layer (and hence invertible in general) if its displacement field is contractive mapping with
respect to some norm (the convergence is then also with respect to that norm). In finite
dimensions convergence in any p-norm is equal and hence we should choose the norm which
gives the loosest bound.

Let us choose || · ||∞ norm for our analysis, which, as it turns out, gives the loosest
possible bound. Then the Lipschitz constant of a displacement field is equivalent to the
maximum || · ||∞ operator norm of the local Jacobian matrices of the displacement field.

Since for matrices || · ||∞ norm corresponds to maximum absolute row sum it is enough
to consider one component of the displacement field.

Let B : R → R be a centered cardinal B-spline of some degree (actually any continuous
almost everywhere differentiable function with finite support is fine) and let us consider an
infinite grid of control points ϕ : Zn → R where n is the dimensionality of the displacement
field. For notational convinience, let us define a set N := {1, . . . , n}.

Now let fϕ be the n-dimensional displacement field (or one component of it) defined by
the control point grid:

fϕ(x) =
∑

α∈Zn

ϕ(α)
∏

i∈N
B(xi − αi) (13)

Note that since the function B has finite support the first sum over Zn can be defined
as a finite sum for any x and is hence well-defined. Also, without loss of generality it is
enough to look at region x ∈ [0, 1]n due to the unit spacing of the control point grid.

For partial derivatives
∂fϕ
∂xj

: Rn → R we have

∂fϕ
∂xj

(x) :=
∑

α∈Zn

ϕ(α) B′(xj − αj)
∏

i∈N\{j}

B(xi − αi) =
∑

α∈Zn

ϕαD
j(x− α) (14)

where Dj(x− α) := B′(xj − αj)
∏

i∈N\{j}B(xi − αi).
Following the power set notation, let us denote control points limited to some set S ⊂ R

as SZn
. That is, if ϕ ∈ SZn

, then for all α ∈ Zn, ϕ(α) ∈ S.
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Lemma 4 For all ϕ ∈ ] − 1/K̃n, 1/K̃n[
Zn

, fϕ is a contractive mapping with respect to the
|| · ||∞ norm, where

K̃n := max
x∈[0,1]n

ϕ̃∈[−1,1]Z
n

∑

j∈N

∣∣∣∣
∂fϕ̃
∂xj

(x)

∣∣∣∣ . (15)

Proof For all x ∈ [0, 1]n, ϕ ∈ ]− 1/K̃n, 1/K̃n[
Zn

∑

j∈N

∣∣∣∣
∂fϕ
∂xj

(x)

∣∣∣∣ < max
x̃∈[0,1]n

ϕ̃∈[−1/K̃n,1/K̃n]Z
n

∑

j∈N

∣∣∣∣
∂fϕ̃
∂x̃j

(x̃)

∣∣∣∣

= max
x̃∈[0,1]n

ϕ̃∈[−1,1]Z
n

∑

j∈N

∣∣∣∣∣
∂fϕ̃/K̃n

∂x̃j
(x̃)

∣∣∣∣∣

=
1

K̃n

max
x̃∈[0,1]n

ϕ̃∈[−1,1]Z
n

∑

j∈N

∣∣∣∣∣
∂fϕ̃/K̃n

∂x̃j
(x̃)

∣∣∣∣∣ =
K̃n

K̃n

= 1.

(16)

Sums of absolute values of partial derivatives are exactly the || · ||∞ operator norms of the
local Jacobian matrices of f , hence f is a contraction.

Lemma 5 For any k ∈ N , x ∈ [0, 1]n, ϕ ∈ [−1, 1]Z
n
, we can find some x̃ ∈ [0, 1]n, ϕ̃ ∈

[−1, 1]Z
n
such that

∂fϕ̃
∂xj

(x̃) =

{
−∂fϕ

∂xj
(x) for j = k

∂fϕ
∂xj

(x) for j ∈ N \ {k}.
(17)

Proof The B-splines are symmetric around origin:

B(x) = B(−x) =⇒ B′(x) = −B′(−x) (18)

Let us propose

x̃i :=

{
1− xi, when i ∈ N \ k
xi, when i = k

(19)

and ϕ̃ : Zn → R as ϕ̃(α) := −ϕ(g(α)) where g : Zn → Zn is a bijection defined as follows:

g(α)i :=

{
1− αi, when i ∈ N \ k
αi, when i = k.

(20)

Then for all α ∈ Zn:

Dk(x̃− α) = B′(x̃k − αk)
∏

i∈N\{k}

B(x̃i − αi)

= B′(xk − g(α)k)
∏

i∈N\{k}

B(−(xi − g(α)i))

= Dk(x− g(α))

(21)
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which gives

∂fϕ̃
∂x̃k

(x̃) =
∑

α∈Zn

ϕ̃(α)Dk(x̃− α)

=
∑

α∈Zn

−ϕ(g(α))Dk(x− g(α)) g is bijective

= −∂fϕ
∂xk

(x).

(22)

And for all j ∈ N \ {k}, α ∈ Zn

Dj(x̃− α) = B′(x̃j − αj)
∏

i∈N\{j}

B(x̃i − αi)

= B′(x̃j − αj) B(x̃k − αk)
∏

i∈N\{j,k}

B(x̃i − αi)

= B′(−(xj − g(α)j)) B(xk − g(α)k)
∏

i∈N\{j,k}

B(−(xi − g(α)i))

= −B′(xj − g(α)j) B(xk − g(α)k)
∏

i∈N\{j,k}

B(xi − g(α)i)

= −B′(xj − g(α)j)
∏

i∈N\{j}

B(xi − g(α)i)

= −Dk(x− g(α))

(23)

which gives for all j ∈ N \ {k}

∂fϕ̃
∂x̃j

(x̃) =
∑

α∈Zn

ϕ̃(α)Dj(x̃− α)

=
∑

α∈Zn

−ϕ(g(α))−Dj(x− g(α)) g is bijective

=
∂fϕ
∂xj

(x).

(24)

Theorem 6 For all ϕ ∈ ]− 1/Kn, 1/Kn[
Zn

, fϕ is a contractive mapping with respect to the
|| · ||∞ norm, where

Kn := max
x∈[0,1]n

∑

α∈Zn

∣∣∣∣∣∣
∑

j∈N
Dj

α(x)

∣∣∣∣∣∣
. (25)
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Proof Let us show that Kn = K̃n.

K̃n = max
x∈[0,1]n

ϕ∈[−1,1]Z
n

∑

j∈N

∣∣∣∣
∂fϕ
∂xj

(x)

∣∣∣∣

= max
x∈[0,1]n

ϕ∈[−1,1]Z
n

∑

j∈N

∂fϕ
∂xj

(x) (Lemma 5)

= max
x∈[0,1]n

ϕ∈[−1,1]Z
n

∑

j∈N

∑

α∈Zn

ϕα Dj(x− α)

= max
x∈[0,1]n

ϕ∈[−1,1]Z
n

∑

α∈Zn

ϕα

∑

j∈N
Dj(x− α)

= max
x∈[0,1]n

∑

α∈Zn

∣∣∣∣∣∣
∑

j∈N
Dj

α(x)

∣∣∣∣∣∣
= Kn

(26)

The last step follows from the obvious fact that the sum is maximized when choosing each
ϕα to be either 1 or −1 based on the sign of the inner sum

∑
j∈N Dj(x− α).

By Lemma 4 f is then a contractive mapping with respect to the || · ||∞ norm.

Theorem 6 proves that if we limit the control point absolute values to be less than 1/Kn,
then the resulting deformation is invertible by the fixed point iteration. Also, approximating
Kn accurately is possible at least for n ≤ 3. Subset of Zn over which the sum needs to be
taken depends on the support of the function B which again depends on the degree of the
B-splines used.

Next we want to show that the obtained bound is also tight bound for invertibility of
the deformation. That also then shows that || · ||∞ norm gives the loosest possible bound.

Since fϕ corresponds only to one component of a displacement field, let us consider a
fully defined displacement field formed by stacking n number of fϕ together. Let us define

gϕ(x) := (fϕ)i∈N . (27)

Theorem 7 There exists ϕ ∈ [−1/Kn, 1/Kn]
Zn

, x ∈ [0, 1]n s.t. det
(
∂gϕ
∂x + I

)
(x) = 0

where
∂gϕ
∂x is the Jacobian matrix of gϕ and I is the identity matrix.

Proof By Lemma 5 and Theorem 6 there exists x ∈ [0, 1]n and ϕ̃ ∈ [−1, 1]Z
n
such that

∑

j∈N

∂fϕ̃
∂xj

(x) = −Kn (28)

where all
∂fϕ̃
∂xj

(x) < 0.

Let us define ϕ := ϕ̃/Kn ∈ [−1/Kn, 1/Kn]
Zn

. Then

∑

j∈N

∂fϕ
∂xj

(x) = −1. (29)
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Now let y ∈ Rn be a vector consisting only of values 1, that is y =: (1)i∈N . Then one
has (

∂gϕ
∂x

+ I

)
(x)y =

(
∂gϕ
∂x

(x)

)
y + y

=


∑

j∈N
1
∂fϕ
∂xj

(x)




i∈N

+ (1)i∈N

= (−1)i∈N + (1)i∈N = 0.

(30)

In other words y is an eigenvector of
(
∂gϕ
∂x + I

)
(x) with eigenvalue 0 meaning that the

determinant of
(
∂gϕ
∂x + I

)
(x) is also 0.

The proposed bound is hence the loosest possible since the deformation can have zero
Jacobian at the bound, meaning it is not invertible.

D.3 Sampling based case (Equation 9)

The bound used in practice, given in Equation 9, is slightly different to the bound proven
in Theorem 6. The reason is that for computational efficiency we do not use directly the
cubic B-spline representation for the displacement field but instead take only samples of the
displacement field in the full image resolution (see Appendix 3.4), and use efficient bi- or
trilinear interpolation for defining the intermediate values. As a result the continuous case
bound does not apply anymore.

However, finding the exact bounds for our approximation equals evaluating the maxi-
mum in Theorem 6 over a finite set of sampling locations and replacing Dj(x) with finite
difference derivatives. The mathematical argument for that goes almost identically and will
not be repeated here. However, to justify using finite difference derivatives, we need the
following two trivial remarks:

• When defining a displacement field using grid of values and bi- or trilinear interpo-
lation, the highest value for || · ||∞ operator norm is obtained at the corners of each
interpolation patch.

• Due to symmetry, it is enough to check derivative only at one of 2n corners of each bi-
or trilinear interpolation patch in computing the maximum (corresponding to finite
difference derivative in only one direction over each dimension).

Maximum is evaluated over the relative sampling locations with respect to the resolution

of the control point grid (which is in the resolution of the features z
(k)
1 and z

(k)
2 ). The exact

sampling grid depends on how the sampling is implemented (which is an implementation
detail), and in our case we used the locations X := {1/2+ 1

2k+1 +
i
2k

| i ∈ Z}n∩ [0, 1]n which
have, without loss of generality, been again limited to the unit cube.

No additional insights are required to show that the equation 9 gives the optimal bound.

For concrete values of K
(k)
n , see Table 16.
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Table 16: Values of K2 and K3 for different sampling rates with respect to the control
point grid. The bound for Sampling rate = ∞ is from (Choi and Lee, 2000). For
each resolution level we define the maximum control point absolute values γ(k)

as 0.99 × 1

K
(k)
n

(in our experiments we have n = 3 dimensional data). Codebase

contains implementation for computing the value for other k.

k Sampling rate K
(k)
2 K

(k)
3

0 1 2.222222222 2.777777778
1 2 2.031168620 2.594390728
2 4 2.084187826 2.512366240
3 8 2.063570023 2.495476474
4 16 2.057074951 2.489089713
5 32 2.052177394 2.484247818
6 64 2.049330491 2.481890143
7 128 2.047871477 2.480726430
8 256 2.047136380 2.480102049
∞ ∞ 2.046392675 2.479472335
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Appendix E. Deformation inversion layer memory usage

We conducted an experiment on the memory usage of the deformation inversion layer com-
pared to the stationary velocity field (SVF) framework (Arsigny et al., 2006) since SVF
framework could also be used to implement the suggested architecture in practice.

With the SVF framework one could slightly simplify the deformation update Equation
5 to the form

U (k) := exp(u(k)(z
(k)
1 , z

(k)
2 )− u(k)(z

(k)
2 , z

(k)
1 )) (31)

where exp is the SVF integration (corresponding to Lie algebra exponentiation), and u(k)

now predicts an auxiliary velocity field. We compared memory usage of this to our imple-
mentation, and used the implementation by Dalca et al. (2018) for SVF integration.

The results are shown in Table 17. Our version implemented using the deformation
inversion layer requires 5 times less data to be stored in memory for the backward pass
compared to the SVF integration. The peak memory usage during the inversion is also
slightly lower. The memory saving is due to the memory efficient back-propagation through
the fixed point iteration layers, which requires only the final inverted volume to be stored
for backward pass. Since our architecture requires two such operations for each resolution
level (U (k) and its inverse), the memory saved during training is significant.

Table 17: Memory usage comparison between deformation inversion layer and
stationary velocity field (SVF) based implementations. The comparison
is between executing Equation 5 using deformation inversion layers and execut-
ing Equation 31 using SVF integration implementation by Dalca et al. (2018).
Between passes memory usage refers to the amount memory needed for storing
values between forward and backward passes, and peak memory usage refers to
the peak amount of memory needed during forward and backward passes. A vol-
ume of shape (256, 256, 256) with 32 bit precision was used. We used 7 scalings
and squarings for the SVF integration.

Method Between passes memory usage (GB) ↓ Peak memory usage (GB) ↓

Deformation inversion layer 0.5625 3.9375
SVF integration 2.8125 4.125

Appendix F. Extended related work

In this appendix we aim to provide a more thorough analysis of the related work, by
introducing in more detail the works that we find closest to our method, and explaining
how our method differs from those.

F.1 Classical registration methods

Classical registration methods, as opposed to the learning based methods, optimize the de-
formation independently for any given single image pair. For this reason they are sometimes
called optimization based methods.
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DARTEL by Ashburner (2007) is a classical optimization based registration method
built on top of the stationary velocity field (SVF) (Arsigny et al., 2006) framework offering
symmetric by construction, inverse consistent, and topology preserving registration. The
paper is to our knowledge the first symmetric by construction, inverse consistent, and
topology preserving registration method.

SyN by Avants et al. (2008) is another classical symmetric by construction, inverse
consistent, and topology preserving registration method. The properties are achieved by
the Large Deformation Diffeomorphic Metric Mapping LDDMM framework (Beg et al.,
2005) in which diffeormphisms are generated from time-varying velocity fields (as opposed
to the stationary ones in the SVF framework). The LDDMM framework has not been used
much in unsupervised deep learning for generating diffeomorphims due to its computational
cost, but some works do exist (Shen et al., 2019b; Ramon et al., 2022; Wang et al., 2023),
and others which are inspired by the framework but make significant modifications, and as
a result lose the by construction topology preserving properties (Wang and Zhang, 2020;
Wu et al., 2022; Joshi and Hong, 2023). SyN is to our knowledge the first work suggesting
matching the images in the intermediate coordinates for achieving symmetry, the idea which
was also used in our work. However, the usual implementation of SyN in ANTs (Avants
et al., 2009) is not as a whole symmetric since the affine registration is not applied in a
symmetric manner.

SyN has performed well in evaluation studies between different classical registration
methods. e.g. (Klein et al., 2009). However, it is significantly slower than the strong base-
lines included in our study, and has already earlier been compared with those(Balakrishnan
et al., 2019; Mok and Chung, 2020a,b), and hence was not included in our study.

F.2 Deep learning methods (earlier work)

Unlike the optimization based methods above, deep learning methods train a neural network
that, for two given input images, outputs a deformation directly. The benefits of this class of
methods include the significant speed improvement and more robust performance (avoiding
local optima) (De Vos et al., 2019). Our model belongs to this class of methods.

SYMNet by Mok and Chung (2020a) uses as single forward pass of a U-Net style
neural network to predict two stationary velocity fields, v1→1.5 and v2→1.5 (in practice two
3 channeled outputs are extracted from the last layer features using separate convolutions).
The stationary velocity fields are integrated into two half-way deformations (and their
inverses). The training loss matches the images both in the intermediate coordinates and in
the original coordinate spaces (using the composed full deformations). While the network
is a priori symmetric with respect to the input images, changing the input order of of the
images (concatenating the inputs in the opposite order for the U-Net) can in principle result
in any two v1→1.5 and v2→1.5 (instead of swapping them), meaning that the method is not
symmetric by construction as defined in Section 1 (this is confirmed by the cycle consistency
experiments).

Our method does not use the stationary velocity field (SVF) framework to invert the
deformations, but instead uses the novel deformation inversion layer. Also, SYMNet does
not employ the multi-resolution strategy. The use of intermediate coordinates is similar to
our work.
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MICS by Estienne et al. (2021) uses a shared convolutional encoder E to encode both
input images into some feature representations E(xA) and E(xB). A convolutional decoder
network D is then used to extract gradient volumes (constrained to contain only positive
values) of the deformations for both forward and inverse deformations with formulas

∇f(xA, xB)1→2 = D(E(xA)− E(xB)) and ∇f(xA, xB)2→1 = D(E(xB)− E(xA)). (32)

The final deformations are obtained from the gradient volumes by a cumulative sum
operation. Since gradients are constrained to be positive the resulting deformation will be
roughly invertible. However, as stated in their work, this only puts a positive constraint
on the diagonal of the Jacobians, not on its determinant, unlike our work which guarantees
positive determinants (Theorem 3).

While MICS is symmetric by construction in the sense that swapping xA and xB will re-
sult in swapping the predicted forward and inverse deformations, this symmetry is achieved
by subtraction (Equation 32) instead of mathematical inverse operation (as in our work,
Equation 2). As a result the predicted ”forward” and ”inverse” deformations are not ac-
tually by construction constrained to be forward and inverse deformations of each other.
MICS uses a loss to enforce this. Also, while MICS employs a multi-step approach, the
symmetric by construction property is lost over the whole architecture due to not using the
intermediate coordinate approach employed by our work.

Additional baselines: In addition to SYMNet, cLapIRN(Mok and Chung, 2021) was
chosen as a baseline because it was the best method on OASIS dataset in the Learn2Reg
challenge (Hering et al., 2022). It employs a standard and straightforward multi-resolution
approach, and is not topology preserving, inverse consistent, or symmetric. Apart from the
multi-resolution approach, it is not methodologically close to our method. VoxelMorph
(Balakrishnan et al., 2019) is a standard baseline in deep learning based unsupervised
registration, and it is based on a straightforward application of U-Net architecture to image
registration.

F.3 Deep learning methods (recent methods parallel with our work)

These methods are very recent deep learning based registrations methods which have been
developed independently of and in parallel with our work. A comparison with these methods
and our model is therefore a fruitful topic for future research.

Iglesias (2023) uses a similar approach to achieve symmetry as our work but in the
stationary velocity field (SVF) framework. In SVF framework, given some velocity field
v, we have the property that exp(v) = exp(−v)−1 where exp represents the integration
operation (Arsigny et al., 2006) generating the deformation from the velocity field. Hence
to obtain symmetric by construction method, one can modify the formula 2 to the form

f(xA, xB) := exp(u(xA, xB)− u(xB, xA)). (33)

which will result in a method which is symmetric by construction, inverse consistent, and
topology preserving. We measure memory usage against this formulation in Appendix E
and show that our formulation using the novel deformation inversion layer requires storing 5
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times less memory for the backward pass. Their method includes only a single registration
step, and not the robust multi-resolution architecture like ours.

Greer et al. (2023) extends the approach the approach by Iglesias (2023) to multi-step
formulation in very similar way to how we construct our multi-resolution architecture by
using the intermediate coordinates (square roots of deformations). They also employ the
SVF framework, as opposed to our work which uses the deformation inversion layers, which,
as shown in Appendix E, requires storing 5 times less memory for the backward pass, which
is significant for being able to train the multi-step network with many steps on large images
(such as our OASIS raw data). Also, their paper treats the separate steps of multi-step
architecture as independent whereas we develop very efficient multi-resolution formulation
based on first extracting the multi-resolution features using ResNet-style encoder.

Zhang et al. (2023) propose a symmetric by construction multi-resolution architecture
that is similar to ours. Differences include again using the SVF framework, as well as
applying losses at different resolutions, as opposed to us only applying them at the final
level.
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Appendix G. Deformation inversion layer practical convergence

We conducted an experiment on the fixed point iteration convergence in the deformation
inversion layers with the model trained on OASIS dataset. The results can be seen in Figure
5. The main result was that in the whole OASIS test set of 9591 pairs not a single deforma-
tion required more than 8 iterations for convergence. Deformations requiring 8 iterations
were only 0.05% of all the deformations and a significant majority of the deformations (96%)
required 2 to 5 iterations. In all the experiments, including this one, the stopping criterion
for the iterations was maximum displacement error within the whole volume reaching below
one hundredth of a voxel, which is a very small error.
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Figure 5: Number of fixed point iterations required for convergence in deforma-
tion inversion layers with the model trained on OASIS dataset. The
stopping criterion for the fixed point iteration was maximum displacement error
within the whole volume reaching below one hundredth of a voxel. All deforma-
tion inversions for the whole OASIS test set are included.

2188



Symmetric, inverse consistent, and topology preserving image registration

Appendix H. Additional visualizations

Figures 6, and 7 visualize the differences in inverse consistency, and cycle consistency re-
spectively.

Figures 8 and 9 visualize dice scores for individual anatomical regions for both OASIS
and LPBA40 datasets. VoxelMorph and SYMNet perform systematically worse than our
method, while cLapIRN and our method perform very similarly on most regions.

Figure 10 visualizes how the deformation is being gradually updated during the multi-
resolution architecture.

SITReg ByConstructionICON

SYMNet (original)

Figure 6: Visual inverse consistency comparison. The deformation f(xA, xB)1→2 ◦
f(xA, xB)2→1 is visualized for SITReg and SYMNet models for a single image
pair in LPBA40 experiment. Since cLapIRN and VoxelMorph do not generate
explicit inverses, they are not included in the figure. Ideally, f(xA, xB)1→2 ◦
f(xA, xB)2→1 should equal the identity mapping, and as can be seen, the property
is well fulfilled by all of the three methods. Only one axial slice of the predicted
3D deformation is visible.
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SITReg ByConstructionICON

cLapIRN SYMNet (original)

VoxelMorph

Figure 7: Visual cycle consistency comparison. The deformation composition
f(xA, xB) ◦ f(xB, xA) is visualized for each model for a single image pair in
LPBA40 experiment. Ideally, changing the order of the input images should
result in the same coordinate mapping but in the inverse direction, since anatom-
ical correspondence is not dependent on the input order. In other words, the
deformation composition f(xA, xB) ◦ f(xB, xA) should equal the identity defor-
mation. As can be seen, the property is only fulfilled (up to small sampling errors)
by our method and ByConstructionICON. Only one axial slice of the predicted
3D deformation is shown.
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Figure 8: Individual brain structure dice scores for the OASIS experiment. Box-
plot shows performance of each of the compared methods on each of the brain
structures in the OASIS dataset. Algorithms from left to right in each group:
SITReg, ByConstructionICON, cLapIRN, VoxelMorph, SYMNet (original)
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Figure 9: Individual brain structure dice scores for the LPBA40 experiment.
Boxplot shows performance of each of the compared methods on each of the brain
structures in the LPBA40 dataset. Algorithms from left to right in each group:
SITReg, cLapIRN, VoxelMorph, ByConstructionICON, SYMNet (original)

2191



Honkamaa and Marttinen

d
(3)
1→1.5 ◦

(
d

(3)
2→1.5

)−1

d
(2)
1→1.5 ◦

(
d

(2)
2→1.5

)−1

d
(1)
1→1.5 ◦

(
d

(1)
2→1.5

)−1

d
(0)
1→1.5 ◦

(
d

(0)
2→1.5

)−1

Figure 10: Visualization of deformation being gradually updated. Each d
(k)
1→1.5 ◦(

d
(k)
2→1.5

)−1
corresponds to the full deformation after resolution level k. The

example is from the OASIS experiment.
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Appendix I. Details on statistical significance

We computed statistical significance of the results comparing the test set predictions of the
trained models with each other. We measured the statistical significance using permutation
test, and in practice sampled 10000 permutations.

To establish for certain the relative performance of the methods with respect to the
tight metrics, one should train multiple models per method with different random seeds.
However, our claim is not that the developed method improves the results with respect to a
single tight metric but rather that the overall performance is better by a clear margin (see
Section 6).

Appendix J. Clarifications on symmetry, inverse consistency, and
topology preservation

Here we provide examples of symmetry, inverse consistency and lack of topology preservation
to further clarify how the terms are used in the paper.

Since symmetry and inverse consistency are quite similar properties, their exact differ-
ence might remain unclear. Examples of registration methods that are inverse consistent by
construction but not symmetric are many deep learning frameworks applying the stationary
velocity field (Arsigny et al., 2006) approach, e.g, (Dalca et al., 2018; Krebs et al., 2018,
2019; Mok and Chung, 2020a). All of them use a neural network to predict a velocity field
for an ordered pair of input images. The final deformation is then produced via Lie algebra
exponentiation of the velocity field, that is, by integrating the velocity field over itself over
unit time. Details of the exponentiation are not important here but the operation has an
interesting property: By negating the velocity field to be exponentiated, the exponentiation
results in inverse deformation. Denoting the Lie algebra exponential by exp, and using
notation from Section 1, we can define such methods as

{
f1→2(xA, xB) := exp(g(xA, xB))

f2→1(xA, xB) := exp(−g(xA, xB))
(34)

where g is the learned neural network predicting the velocity field. As a result, the methods
are inverse consistent by construction since exp(g(xA, xB)) = exp(−g(xA, xB))

−1 (accuracy
is limited by spatial sampling resolution). However, by changing the order of inputs to
g, there is no guarantee that g(xA, xB) = −g(xB, xA) and hence such methods are not
symmetric by construction.

MICS (Estienne et al., 2021) is an example of a method which is symmetric by construc-
tion but not inverse consistent. MICS is composed of two components: encoder, say E, and
decoder, say D, both of which are learned. The method can be defined as

{
f1→2(xA, xB) := D(E(xA, xB)− E(xB, xA))

f2→1(xA, xB) := D(E(xB, xA)− E(xA, xB)).
(35)

As a result, the method is symmetric by construction since f1→2(xA, xB) = f2→1(xB, xA)
holds exactly. However, there is no architectural guarantee that f1→2(xA, xB) and f2→1(xB, xA)
are inverses of each other, and the paper proposes to encourage that using a loss function.

2193



Honkamaa and Marttinen

In the paper they use such components in multi-steps manner, and as a result the overall
architecture is no longer symmetric.

Lack of topology preservation means in practice that the predicted deformation folds on
top of itself. An example of such deformation is shown in Figure 11.

Figure 11: Visualization of a 2D deformation which is not topology preserving.
The deformation can be seen folding on top of itself.
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