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Abstract

The Granger framework is useful for discovering causal relations in time-varying signals.
However, most Granger causality (GC) methods are developed for densely sampled time-
series data. A substantially different setting, particularly common in medical imaging, is
the longitudinal study design, where multiple subjects are followed and sparsely observed
over time. Longitudinal studies commonly track several biomarkers, which are likely gov-
erned by nonlinear dynamics that might have subject-specific idiosyncrasies and exhibit
both direct and indirect causes. Furthermore, real-world longitudinal data often suffer
from widespread missingness. GC methods are not well-suited to handle these issues.
In this paper, we propose an approach named GLACIAL (Granger and LeArning-based
CausalIty Analysis for Longitudinal studies) to fill this methodological gap by marrying
GC with a multi-task neural forecasting model. GLACIAL treats subjects as independent
samples and uses the model’s average prediction accuracy on hold-out subjects to probe
causal links. Input dropout and model interpolation are used to efficiently learn nonlinear
dynamic relationships between a large number of variables and to handle missing values
respectively. Extensive simulations and experiments on a real longitudinal medical imaging
dataset show GLACIAL beating competitive baselines and confirm its utility. Our code is
available at https://github.com/mnhng/GLACIAL.
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1. Introduction

Granger causality (GC) (Granger, 1969) is a versatile and popular framework that exploits
“the arrow of time” to detect causal relations in timeseries data (Roebroeck et al., 2005;
Zhang et al., 2011). In GC, we test whether past values of one time series predict the future
values of another series (i.e., forecasting), which allows us to infer causal relationships.
Despite its popularity, current implementations of GC are only well-suited for densely and
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uniformly sampled timeseries data from one system at a time. They are not designed
for the longitudinal setup involving multiple systems (e.g., subjects), which are common in
medical imaging. Although one could infer a causal graph for each subject and aggregate the
graphs across subjects, this approach is untenable in many longitudinal studies in medicine
where each subject only has a few observations, making the inference of each causal graph
inaccurate.

Constraint-based methods such as PC or FCI (Spirtes et al., 2000), which rely on in-
dependent samples and conditional independence tests, are also commonly used for causal
discovery. These methods would use one observation per subject and thus are not designed
to detect causal relations reflected in temporal dynamics. We believe there is a lack of
methods for causal discovery in longitudinal studies that consist of multiple subjects with
sparse observations.

Longitudinal imaging studies typically track several variables simultaneously. Thus,
applying causal discovery to longitudinal studies can be challenging because of the large
number of variables involved and the complex (nonlinear) relationships between variables.
Nonlinear GC methods (e.g. those based on non-parametric methods (Su and White, 2007;
Marinazzo et al., 2008)) do not scale to large number of variables (Eichler, 2012). Simi-
larly, existing GC tests that use neural networks to infer nonlinear dynamics (Tank et al.,
2021; Nauta et al., 2019; Khanna and Tan, 2020) also face scalability issues. On the other
hand, using linear GC to infer nonlinear relationships can be fast but may produce wrong
results (Li et al., 2018).

Furthermore, prior GC methods are, to the best of our knowledge, all association-based.
That is, they test for causal relationships via interrogating fit (learned) model weights. For
example, in the linear GC approaches, this is achieved by testing the statistical significance
of model coefficients. As the detection power of association-based GC (Granger, 1969;
Lütkepohl, 2005) diminishes with increasing number of variables (Sugihara et al., 2012;
Runge et al., 2019b), it may fail to detect the weak coupling between a node and its parents,
in particular when there are a lot of variables and limited data (Runge et al., 2019a; Yuan
and Shou, 2022). Another challenge of real-world longitudinal studies is missing data.
While there is no consensus about what to do about missing values (Glymour et al., 2019),
several works (Strobl et al., 2018; Tu et al., 2019) have tried to address this issue for cross-
sectional data. Yet, as far as we know, missingness is under-explored in longitudinal studies,
particularly in the context of causal discovery. Finally, GC, in its original form, does not
differentiate between direct and indirect causes (Yuan and Shou, 2022). Although, in theory,
infinite history (observations) could shield off indirect causes from being detected as edges
in the output causal graph, when the number of observations per subject is small, false
positives due to indirect causes is a common practical problem.

In this work, we propose GLACIAL (Fig 1), which stands for a “Granger and LeArning-
based CausalIty Analysis for Longitudinal studies.” GLACIAL combines GC with a practi-
cal machine-learning based approach to test for causal relations among multiple variables in
a longitudinal study. GLACIAL extends GC to longitudinal studies by treating each sub-
ject’s trajectory as an independent sample, governed by a shared causal mechanism that is
reflected in the temporal dynamics. This treatment is similar to prior works where subjects
are assumed to be independent samples in longitudinal data analysis (Hernan and Robins,
2020). By applying a standard train-test setup with hold-out subjects, GLACIAL can test
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Figure 1: GLACIAL. Overview of the proposed approach for longitudinal studies.

for effects of causal relations in expectation. Critically, GLACIAL infers causal relation-
ships based on interrogating predictive accuracy and not a direct analysis of model weights,
which is common in existing association-based GC methods. GLACIAL employs a single
multi-task neural forecasting model, trained with input feature drop-out, to learn nonlinear
relationships among all variables in time-varying data. The model also handles missing
values using model interpolation. Thus, although neural networks have been used in the
past for causal discovery, GLACIAL efficiently tests for causal relations of a large set of
variables in data where timepoints may be sampled irregularly and may contain missing
values. The efficiency and flexibility of GLACIAL make it applicable to real-world multi-
modal medical imaging studies with many variables. Furthermore, GLACIAL includes
post-processing heuristics to account for indirect causes and resolve the directionality of
detected ambiguous associations. Extensive experiments on synthetic data and real data
from a longitudinal medical imaging study show that GLACIAL can infer relationships ac-
curately even in challenging real-world scenarios with sparse observations, a large number
of variables and direct causes, and a large degree of missing data. Although a specific model
was used in our experiments, GLACIAL is model-agnostic.

2. Related Works

Most existing causal discovery (CD) methods are not intended for the longitudinal study
design, where multiple subjects are sparsely observed at different timepoints. CD methods
designed for timeseries data or independent samples are often used in the longitudinal
setting despite potential poor performance.

Causal Discovery: CD methods intended for cross-sectional studies are ill-suited for
longitudinal studies. They often fall under: constraint-based search (e.g. FCI (Spirtes et al.,
2000)), score-based search (e.g. Greedy Equivalence Search (GES) (Chickering, 2002)),
functional causal models (FCMs) (Shimizu et al., 2006; Hoyer et al., 2008; Zhang and
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Hyvärinen, 2009a; Zhang and Chan, 2006; Zhang and Hyvärinen, 2009b), or continuous
optimization (Zheng et al., 2018). Search methods can scale well if causal relations are
linear (Kalisch and Bühlman, 2007; Ramsey et al., 2017) although their output may not
be informative enough (e.g. containing bidirectional edges). In contrast, by making strong
assumptions about the functional form of the causal process, FCM can better identify
the causal direction (Hyvärinen and Pajunen, 1999; Zhang et al., 2015), although FCM
methods usually do not scale well (Glymour et al., 2019). Besides, if the assumed FCM is
too restrictive to be able to approximate the true data generating process, the results may
be misleading.

There are also various CD methods for timeseries (Chu et al., 2008; Runge et al., 2019b;
Runge, 2020; Entner and Hoyer, 2010; Malinsky and Spirtes, 2018, 2019; Hyvärinen et al.,
2010; Peters et al., 2013; Pamfil et al., 2020). These methods take in consecutive blocks of
observations and output a Full Time Graph (Peters et al., 2017), which contain not only
the variables in the system but also their temporally-lagged versions. Although methods for
timeseries may be better than cross-sectional ones, they are still not ideal for longitudinal
data where sparse observations with potentially missing values come from more than one
subject.

Granger Causality: GC (Granger, 1969, 1980) checks for dependence between vari-
ables’ timeseries, after accounting for other available information. Temporal dependence is
thus linked to causation by the “Common Cause Principle”: two dependent variables are
causally related (one causes the other, or both share a common cause) (Peters et al., 2017).
Checking pairwise dependence in GC can be efficient, but often yields false positives be-
cause other variables in the system are not accounted for. In contrast, multivariate GC can
account for common causes and therefore is more accurate but also more computationally
demanding (Eichler, 2007, 2012). In practice, multivariate GC may be infeasible for a large
set of variables and more efficient approaches (Basu et al., 2015; Huang and Kleinberg,
2015) were developed to deal with this challenge. Recently, more general GC tests based on
neural networks (Tank et al., 2021; Nauta et al., 2019; Khanna and Tan, 2020) have been
proposed which outperform vector auto regressive (VAR) linear GC (Glymour et al., 2019).
Scaling these neural-network based GC methods to handle a large number of variables is
still a concern.

Missing data: For cross-sectional studies, missing values can be imputed, which
may result in data contradicting the causal processes if imputation is done naively. Al-
ternatively, observations with missing values can be removed (list-wise deletion), which
can lead to the omission of vast amounts of valuable datapoints. Test-wise Deletion PC
(TDPC) (Strobl et al., 2018) is more data-efficient than list-wise deletion but may produce
spurious edges when missingness is not completely at random (Tu et al., 2019). Missing-
Value PC (MVPC) (Tu et al., 2019) corrects TDPC’s output to account for different miss-
ingness scenarios. Although, tackling missingness in data through imputation has been
studied extensively (Ma et al., 2019, 2020; Ma and Zhang, 2021; Morales-Alvarez et al.,
2022) in the context of cross-sectional studies, to the best of our knowledge, no existing
method addresses missingness in longitudinal studies for the CD task.
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3. Method

Both cross-sectional CD methods (multiple subject, single timepoint data) and timeseries
CD methods (single subject, multiple timepoints data) are ill-suited for longitudinal studies
(multiple subjects, multiple timepoints data). Besides, prior methods often assume time-
series are infinitely long (i.e. unlimited history), regularly sampled, and without missing
values. Thus, they may not work for real-world datasets when observation history per sub-
ject is limited, irregular, and riddled with missing values. The next few sections show (1)
how GLACIAL handles longitudinal data, (2) how GLACIAL deals with irregularly sam-
pled timepoints containing missing values, and (3) GLACIAL’s post-processing strategies
to account for limited history of observed timeseries.

Causal discovery is impossible without assumptions. GLACIAL assumes causal faith-
fulness, no hidden confounder, acyclicity (DAG, hence no feedback effect) and no instanta-
neous effects (the first three assumptions are standard in CD literature, c.f. (Pearl, 2009)).
GLACIAL does not assume stationarity unlike linear GC.

3.1 Longitudinal Study Set-up

In a longitudinal imaging study, there are multiple subjects who are sparsely scanned during
a limited number of visits. Let Xt and Yt be time-varying variables (e.g., two image-
derived biomarkers, or an image-derived biomarker and a clinical score) indexed with non-
negative integer t ∈ {0, . . . T−1} = [T ]. We use super-script notation to indicate history:
Xt = {X0, . . . ,Xt−1}. Ωt = Xt ∪ Yt ∪ . . . is the union of histories of all variables. The
data from subject i with Ti observations (Ti ≤ T ) is ΩTi . The whole longitudinal dataset
is {ΩTi ; i ∈ 1, . . . , N}. The number of observations, Ti, is usually less than 10 (sparse)
and can be as low as 1 or 2. The number of subjects, N , is often less than 10,000. The ΩTi

matrices may contain missing values.

3.2 Granger Causality Formulation

A popular GC test is based on comparing the mean squared error (MSE) achieved by two
predictors (Granger, 1980). In the GC MSE formulation, we conclude that “Y causes X”
if:

δt(X|Y ) = MSE(Xt,E[Xt|Ωt \Yt])

−MSE(Xt,E[Xt|Ωt]) > 0,∀t ∈ [T ] (1)

where E denotes (conditional) expectations. Eq 1 simply calculates the MSE difference
between two optimal (in an MSE sense) predictors of X (see Appendix A.1 and (Granger,
1980)). The first predictor (i.e. E[Xt|Ωt \ Yt]) is not given information about Y . The
second predictor (i.e. E[Xt|Ωt]) is given all past information, including about Y . Since
δt(X|Y ) > 0, ∀t, Eq 1 can be adapted for longitudinal data as:

∆MSE(X|Y ) = Ei

[ 1

Ti

Ti−1∑
t=0

δt(X|Y )
]
> 0 (2)

Relying on the assumption that statistical dependence implies a causal link (Reichen-
bach, 1956), when past values of Y predict future values of X (dependence): (1) X causes Y
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OR (2) Y causes X OR (3) X and Y have a common cause. With sufficiently high sampling
rate, causes are observed to occur before effects in time, thus ruling out (1). The no hidden
confounder assumption rules out (3). Hence, a positive test implies that “Y causes X”. The
next section details how this test can be done in practice when the optimal predictors are
not given. We are particularly interested in the setting with multiple observed independent
subject trajectories.

3.3 Choice of Predictor

We can approximate the MSE-optimal predictors with neural networks F and G.

δt(X|Y ;F,G) = MSE(Xt, F (Xt;Ω
t \Yt))

−MSE(Xt, G(Xt;Ω
t)) (3)

∆MSE(X|Y ;F,G) = Ei

[ 1

Ti

Ti∑
t=1

δt(X|Y ;F,G)
]

(4)

To calculate δt(X|Y ;F,G), we first have to train the forecasting neural networks. Once
trained, the neural networks can be used to calculate ∆MSE(X|Y ;F,G) on hold-out test
subjects. Thus, the predictors’ performance depends on the training data, optimization,
network initialization, and other implementation details. Even with the best optimizer and
initialization procedure, a bad training-test split could, for instance, result in a sub-optimal
model and consequently false causal link estimates. For more robust causal discovery, in
GLACIAL, we repeat the estimation of ∆MSE(X|Y ;F,G) multiple times using different
random splits of data and test that ∆MSE is positive on average using a statistical test.

We use a single forecasting recurrent neural network (RNN) (Graves et al., 2008) in place
of all predictors. The RNN is trained to predict the next step values of all the variables,
Ωt, given all available past values, Ωt. We adopt the RNN model from (Nguyen et al.,
2020) since it implements model interpolation to handle missing values. In particular, if
there are missing values at time t, they can be replaced by the RNN prediction, Ω̂t (model
interpolation). This timepoint with interpolated values is then concatenated with Ωt to
form Ωt+1 which is subsequently used to predict values at time t+1. In this way, the RNN
is not aware whether the features are observed/measured or imputed. Missing values are
ignored when calculating training loss and estimating δt(X|Y ;F,G) on hold-out subjects
(Eq 3). Training follows (Nguyen et al., 2020) so that even data containing missing values
can be used for RNN training. Note that the choice of the neural network is not very critical.
Given that the network can fit the data well, any neural network model that forecasts future
values from past values and implements model interpolation should work in GLACIAL.

Input Feature Dropout: Training separate neural networks to compute ∆MSE(X|Y ;F,G)
for each variable pair would make this approach infeasible for medical imaging studies with
numerous variables. This is because the number of networks required would be proportional
to the number of variables squared. Instead, we propose to train a single multi-task (i.e.,
multi-output) RNN, F (·; θ), to approximate E[Xt|Ωt \Yt] and E[Xt|Ωt], for all predicted
variables Xt. A similar technique has been shown to allow a single model to learn multiple
predictive functions (Nguyen et al., 2024). The RNN acts as the former when Y is masked
out of the input vector and acts as the latter when the input is complete. To obtain a model
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that can produce accurate predictions under these scenarios, during training, we augment
each mini-batch by dropping out subject variables from the input features.

Implementation Details: The same settings of GLACIAL are used in all experiments.
We used repeated 5-fold cross-validation to split a dataset into training, validation, and test
sets with a 3:1:1 ratio. The RNN is trained to minimize next-step prediction error using
Adam (Kingma and Ba, 2014), L2 loss, and a learning rate of 3E-4. The RNN has one hidden
layer of size 256. Training was done on an NVIDIA TITAN Xp GPU. The validation set
is used for early stopping. Cross-validation is repeated 4 times, resulting in 20 different
splits of data. We find 4 repetitions to strike a good balance between robustness and speed.
Running more repetitions might slightly improve the results when missingness is severe but
at a higher computational cost (see Appendix C.1). We perform a t-test on the ∆MSE
statistic and use the significance level threshold of 0.05.

3.4 Post-Processing

GC assumes history of the timeseries is infinite. When observations are finite as in real-world
longitudinal studies, GC may draw wrong conclusions. E.g., consider following deterministic
system:

Yt = aYt−1 + bYt−2

Xt = cYt−2.

In this system, Y causes X since manipulating Y will change the value of X. By the same
logic, X is not the cause of Y because manipulating X will not change Y .

When history is infinite, GC works as expected

E[Yt|Xt,Yt] = E[Yt|Yt] = Yt

MSE(Yt,E[Yt|Yt]) = MSE(Yt,E[Yt|Xt,Yt]) = 0

⇒ X does not cause Y (correct)

However, when only 1 past timepoint is given (finite history), GC draws a wrong inference.

MSE(Yt,E[Yt|Yt−1]) > MSE(Yt,E[Yt|cYt−2,Yt−1]) = MSE(Yt,E[Yt|Xt−1,Yt−1])

⇒ X causes Y (incorrect)

Thus, GC may detect edges in both direction (X → Y and Y → X) for a pair of variables
when limited history is given. It can be shown in a similar fashion that if X causes Y
and Y causes Z (X is the indirect cause of Z), Y will not be able to shield Z from X if
only limited history is given. Thus, GC will also detect edges for indirect causes in both
direction (X → Z and Z → X).

GLACIAL includes two additional post-processing steps to remove these false positives.
Let S(X|Y ) be the statistic (e.g. the t-test) that tests for the positivity of ∆MSE from
several train/test splits. Thus S(X|Y ) can be viewed as a test for whether Y causes X.

1. Orient bidirectional edge: If S(X|Y ) < S(Y |X) remove Y→X, else remove
X→Y . This step is similar to prior work such as (Hoyer et al., 2008; Zhang and Hyvärinen,
2009a; Janzing et al., 2012; Kocaoglu et al., 2017) which leverages causal asymmetry to
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Algorithm 1 GLACIAL

In: Data splits (Dtrain
1 , Dtest

1 ), . . . , (Dtrain
n , Dtest

n )
Out: Causal graph G
Step 1: Association check using the GC MSE test
For each data split Di

Fit RNN model Fi using Dtrain
i

For each variable pair (u, v)
Calculate ∆MSE[u, v, i] using Fi and Dtest

i ;
For each variable pair (u, v)

t-statistic, p-value = t-test(∆MSE[u, v, ∗]); (t-test across data splits)
If p-value < threshold

Add u→v to G; S[u, v] = t-statistic;
Step 2: Orient bidirectional edges
For each bidirectional pair u→v and v→u in G
If S[u, v] < S[v, u]

Remove u→v from G; (v→u has stronger effect)
Else

Remove v→u from G; (u→v has stronger effect)
Step 3: Prune indirect causes
For each u→v in G
For each path p = (u=w0, w1, . . . , wk=v)
If S[u, v] < S[wj , wj+1] ∀j ∈ {0, . . . , k−1}

Remove u→v; break;
For each path p = (v=w0, w1, . . . , wk=u)
If S[u, v] < S[wj , wj+1] ∀j ∈ {0, . . . , k−1}

Remove u→v; break;

determine the causal direction (the direction with the bigger effect is regarded as the causal
direction). T-statistic has been shown to be informative for causal discovery (Weichwald
et al., 2020). Appendix A.2 presents a mathematical justification for this heuristic.

2. Remove indirect edge: Remove edge X→Y if there exists an alternative path
(X:=U0, U1, . . . , Y :=Uk) from X to Y or a path (Y :=U0, U1, . . . , X:=Uk) from Y to X if

S(Y |X) < min({S(Uj+1|Uj); j ∈ 0, . . . , k−1}).

Intuitively, if there is an alternative path on which the effect of the weakest edge is greater
than the effect of X→Y then X is likely an indirect cause of Y . A complete description of
GLACIAL is shown in Algorithm 1.

3.5 Runtime Complexity

Since GLACIAL uses a single multi-task RNN to check relationships between all variable
pairs, the number of RNNs trained by GLACIAL is independent of the number of variables
and is equal to the number of data splits (see Algorithm 1 STEP 1). For example, with
4 repetitions of 5-fold cross-validation, GLACIAL needs to train 20 different RNNs. This
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number is the same whether there are 10 or 100 variables. Obviously, having more variables
will lead to longer execution time per batch but much of the computation is parallelizable
(as long as the batch fits into GPU memory). Therefore, the runtime complexity is mostly
dominated by the number of RNNs that must be trained.

4. Experiments

4.1 Experimental Set-up

In addition to the problems listed in Section 3, CD methods often struggle when (1) re-
lationships are non-linear, (2) the number of variables is large, or (3) a node has many
parents. The subsequent experiments are designed to show GLACIAL’s efficacy and to
show that GLACIAL is less affected by these problems. First, the simulations include both
non-linear trajectories and linear random-walk trajectories. GLACIAL is also applied on
real multivariate medical imaging data which most likely include non-linear trajectories.
Second, there is a simulation with a moderate-size graph consisting of 39 nodes to demon-
strate scalability. Third, the simulation with the 39-node graph includes one node (i.e. 22)
with 18 direct causes.

4.1.1 Baselines

We benchmark GLACIAL against both CD methods for cross-sectional data and CD meth-
ods for timeseries. Only representative and competitive baselines are shown (see Ap-
pendix C.2 for the remaining baselines).

CD Methods for Cross-Sectional Data: We compare against PC, FCI (Spirtes
et al., 2000), GFCI (Ogarrio et al., 2016), and Sort-N-Regress (Reisach et al., 2021) (SnR).
GFCI combines GES and FCI into a single algorithm. SnR is a simple baseline to ensure
that benchmarked approaches go beyond exploiting differences in variables’ marginal vari-
ance (Reisach et al., 2021). As these approaches assume independent observations, only first
timepoints (observations) of subjects are used. In most longitudinal studies, subjects are
guaranteed to have first timepoints (but not other timepoints). Hence, using the first time-
points will result in the most number of independent timepoints with the least amount of
missing data in real-world datasets. Besides, using all timepoints led to worse performance
in our preliminary experiments using simulated data. Similar to (Shen et al., 2020), GFCI is
run multiple times (i.e. 20) using different bootstraps of subjects’ first timepoints, resulting
in multiple graphs. Only edges appearing in more than half of the resultant graphs are kept
in final graph. Using a higher threshold (80%) led to worse result (see Appendix C.4).

CD Methods for Timeseries Data: We also adopt SVAR-GFCI (Malinsky and
Spirtes, 2019), PCMCI+ (Runge, 2020), DYNO-TEARS (Pamfil et al., 2020), and several
GC-based approaches as baselines. GC-based approaches include linear GC and more recent
neural GC tests: cMLP and cLSTM from (Tank et al., 2021), TCDF from (Nauta et al.,
2019), SRU and eSRU from (Khanna and Tan, 2020). For linear GC, F-statistic was used
to test for presence of edges using the same threshold as in GLACIAL. For longitudinal
data, one could either (1) estimate one causal graph for each subject and aggregate the
graphs or (2) estimate just one graph using concatenated data from all the subjects. Since
(1) often fails when the number of timepoints per subject is sparse, (2) was used instead.
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Causal discovery using concatenated subjects’ data has been investigated in (Di et al.,
2019; Qing et al., 2021). Besides, linear GC could output false positives when timeseries
are non-stationary (He and Maekawa, 2001). One could make the timeseries stationary
by calculating the difference (Evgenidis et al., 2017) or the log difference between time-
points (Stock and Watson, 2012). However, using differences led to worse results so we
report the results using the original timeseries instead.

The input to SVAR-GFCI and PCMCI+ are also the concatenated timeseries from
all the subjects. For DYNOTEARS which can accept timeseries from multiple subjects,
the timeseries are not concatenated. The hyper-parameters of SVAR-GFCI, PCMCI+,
DYNOTEARS and neural GC tests are selected based on the suggestions in their original
publications.

Missing data: For data with missingness, TDPC (Strobl et al., 2018) and MVPC (Tu
et al., 2019) are used instead of GFCI. For a dataset, each algorithm is run 20 times and
the results are aggregated using the same 50% threshold. As far as we know, there is no
prior work on applying causal discovery methods to timeseries data with missing values.
Therefore, we used linear interpolation to fill out missing values in the data before applying
these methods (linear/neural GC, SVAR-GFCI, PCMCI+, and DYNOTEARS). It may not
be feasible to apply more complex interpolation methods since the number of timepoints of
a subject can be as low as 2 (after discounting missing values).

4.1.2 Simulated Data

The sample size in the simulations was set to 2000 subjects, roughly the size of the ADNI
dataset. Only six timepoints are extracted from each subject’s timeseries to simulate sparse
observations (see Appendix C.5 for results with 24 timepoints). We consider two scenarios.
First, the temporal dynamics are parameterized via the sigmoid function, which is a widely
used model for the trajectories of biomarkers, e.g., in Alzheimer’s disease (Jack Jr et al.,
2013). In the second scenario, we implement random-walk series. We experimented with 3
different structural causal models (SCMs), one linear SCM and two non-linear SCMs. See
Appendix B for further details. Results for the non-linear SCMs are shown in Appendix C.3.
As causal structure of simulated data may leak through variables’ marginal variance, the
data are standardized to zero-mean and unit-variance to prevent CD algorithms from gaming
the simulated data (Reisach et al., 2021).

Fig 2 shows the causal graphs used for generating the synthetic data. The first graph
(7 nodes) contains all the basic structures, namely chain, fork, and collider. The second
graph (39 nodes) is used to demonstrate GLACIAL’s scalability. This graph is inspired
by the RTK/RAS signaling pathway in oncology and is taken from (Sanchez-Vega et al.,
2018). The second graph is a realistic target that a causal discovery algorithm should be
able to find from observational data. Since the shape of the evolution of signaling proteins
is not known, we use Gaussian random-walk as the sample path function. To simulate
missingness (completely at random; MCAR), the values for each timeseries of a subject are
independently dropped at fixed rate p ∈ {0.1, 0.3, 0.5}. Since real data missingness may
be more adverse than MCAR, results on simulated missing data are optimistic estimates
of performance. The missingness rate is chosen to match the rate in real data. Since
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values from different timeseries are dropped independently, the resulted data could contain
subjects with all timepoints having at least one missing values.

  

2

1 43 65 87
109 1211 1413
1615 1817 2019

2221 2423

2726 292825

30 3231343336

37 3938

35

(A) (B) (C) (D)

cluster

Figure 2: Simulation. (A) 7-node graph having all basic structures (chain, fork, collider).
(B) Subject with random-walk trajectories and linear SCM (data before stan-
dardizing to zero mean and unit variance). Only timepoints under vertical lines
are observed. (C) Subject with sigmoid trajectories and linear SCM. (D) More
realistic 39-node graph resembling the RTK/RAS signaling pathway. Nodes in
the same cluster have the same causal relations.

4.1.3 Real-world Data from an Alzheimer’s Disease Study

We use ADNI (Jack Jr et al., 2008), a longitudinal study of Alzheimer’s disease (AD)
that consists of 1789 subjects and includes multi-modalities of medical images. Each sub-
ject in ADNI has about 7 timepoints on average. The ADNI study tracks multiple AD
biomarkers such as region-of-interest (ROI) volumes (e.g. hippocampal) derived from struc-
tural MRI scans, cognitive tests (e.g. ADAS13), proteins (e.g. amyloid beta) derived from
cerebral spinal fluid samples, and molecular imaging that captures the brain’s metabolism
(e.g. FDG PET). The missingness rates vary for different biomarkers, ranging from 30%
(ADAS13) to around 80% (FDG PET). The variables are shown in Fig 7c and described
in Appendix D. For ease of interpretability, we only experiment with summary statistics
(volumetric measurements) of medical images. However, GLACIAL can be easily extended
to find causal relations between more fine-grain variables in medical images.

4.1.4 Metrics

F1-score, which is the harmonic mean of precision and recall, is used to quantify different
approaches’ performance. Note that we assume that there is a ground-truth (directed)
graph that describes causal relations. Each method will also return a list of directed edges
between variables. Precision is the ratio of correctly identified edges over all predicted edges,
while recall is the ratio of correct edges over all ground-truth edges. A predicted edge is
considered incorrect if the edge does not exist in the ground-truth graph or the predicted
direction contradicts the ground-truth direction. Thus, a predicted bidirectional edge would
be incorrect if the ground-truth edge has only one direction.
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5. Results

5.1 Simulated Data

7-node graph: For random-walk data, GLACIAL outperforms the baselines for various
lag-times and measurement noise levels (Fig 3, 1st column). Similarly, GLACIAL also
outperforms the baselines, for the sigmoid data (2nd and 3rd column). GLACIAL’s per-
formance dips (3rd column) when input history (5 years) is shorter than the lag-time (6
or 7 years). This dip is more pronounced when measurement noise is high (3rd column,
bottom).

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 3: Average F1-scores at different settings of sample path, lag-time and measurement
noise (7-node graph). GLACIAL outperforms baselines in most settings (see
Appendix C.2 for more comparisons).

DYNOTEARS fails to detect causal relations in systems with almost deterministic dy-
namics (2nd column) even though it is the best baseline. System with deterministic dy-
namics is also challenging for linear GC (Peters et al., 2017) although it is slightly better
than DYNOTEARS (F1-score < 0.2). Interestingly, GLACIAL still works in these systems
(F1-score = 0.6). Only GLACIAL manages to consistently beat the strong SnR (Sort-N-
Regress) baseline.

39-node graph: Although DYNOTEARS is the best baseline for the 7-node graph, its
performance on the big graph is worse than linear Granger (Fig. 4). GLACIAL consistently
outperforms all baselines on this large graph when the sample path is Gaussian random-
walk. GLACIAL performs quite well despite the presence of a cluster of direct causes whose
contribution to node “22” may be too small to detect.

Missing data: Fig 5 shows F1-scores at different degrees of missingness. GLACIAL out-
performs TDPC and MVPC, CD approaches tailored for missing data, by better exploiting
the temporal dynamics within subjects’ timeseries. GLACIAL also outperforms CD meth-
ods for timeseries such as cLSTM and DYNOTEARS. Although being the best baseline,
DYNOTEARS often fails when the missingness level is high (¿0.3). When half of the values
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Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.00

0.25

0.50

0.75

1.00
Random Walk, Noise=0.1

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Random Walk, Noise=1.0

Figure 4: Average F1-scores at different settings of lag-time and measurement noise (39-
node graph, Gaussian random-walk). GLACIAL outperforms baselines in most
settings (see Appendix C.2 for more comparisons).

are missing (=0.5), GLACIAL can still infer some causal relations. As an aside, GLACIAL’s
performance on missing data can be improved with more repetitions (see Appendix C.1).

Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5
0.00

0.25

0.50

0.75

1.00
Random Walk, Lag=5

tdPC MVPC cLSTM eSRU DYNOTEARS Linear GC GLACIAL GLACIAL 30
Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5

Sigmoid, Lag=5

Figure 5: Average F1-scores at various levels of missing at random. Lag-time=5. Noise
level = 0.1. GLACIAL usually outperforms baselines. Running GLACIAL for
more repetitions (i.e. 30 instead of 4, denoted as GLACIAL 30; see Section 3.3)
can improve performance when dealing with missing data.

5.2 GLACIAL’s Post-processing Ablation

GLACIAL’s first step tests for edges in the causal graph by comparing the difference in
MSE on hold-out subjects. However, when test subjects are only sparsely observed for a
limited number of times, this step may find spurious edges (edges from effect to cause or
edges between indirect cause, e.g. a grand-parent, and effect). To address this problem,
GLACIAL has two additional heuristics: one (Step 2) to remove edges from effect to cause
and another (Step 3) to prune edges between indirect cause and effect. Fig 6 shows the
contribution of these two post-processing heuristics to F1-scores at various lag-times and
noise levels (7-node graph simulation). The first heuristic (Step 2) consistently leads to
better results. While the second heuristic (Step 3) is beneficial most of the time, it can
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sometime result in performance degradation. Thus, when applying GLACIAL to real data,
it is recommended to compare the outputs with and without the second heuristic to decide
which output is more plausible.

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0

0.5

1.0
Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0

0.5

1.0
Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

Step 1 Step 1+2 Step 1+2+3
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 6: Contribution from GLACIAL’s heuristics to F1-scores. 7-node graph simulation.

5.3 GLACIAL’s Hyper-parameter Sensitivity Ablation

Since GLACIAL uses neural network for inference, one may think that its results are sen-
sitive to the choice of hyper-parameters. We analyzed GLACIAL’s performance as the
hyper-parameters vary. Table 1 shows the performance of GLACIAL while varying (1) the
number of hidden layers, (2) the size of the hidden layer(s), and (3) the learning rate used.
GLACIAL’s results seem quite robust to the choice of hyper-parameters.

Table 1: GLACIAL’s results vary little with different hyper-parameters. Lag-time=5. Noise
level = 0.1. L: number of layers, D: size of hidden layer, R: learning rate (D1: 128,
D2: 256, D3: 512, R1: 1E-3, R2: 3E-4, R3: 1E-4)

Simulation L1-D2-R2 L1-D1-R2 L1-D3-R2 L2-D2-R2 L1-D2-R1 L1-D2-R3

Random-walk 0.97±0.06 0.96±0.06 0.96±0.06 0.96±0.06 0.92±0.09 0.97±0.06
Sigmoid 0.92±0.00 0.92±0.09 0.91±0.08 0.94±0.03 0.92±0.00 0.92±0.00

5.4 Results on ADNI Data

The output of applying GLACIAL to different sets of ADNI biomarkers are shown in Fig 7.
Edge weights denote the frequencies at which edges were detected in multiple runs. Most of
the edges are consistently detected across different runs with the exception of “Hippocam-
pus → MidTemp” (67%, Fig 7a) and “Fusiform → ABETA” (65%, Fig 7c). Although
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GLACIAL’s neural forecasting model assumes MCAR and missingness in ADNI data may
be more adverse than that, GLACIAL’s result seems promising. There is a high degree
of agreement between the 3 graphs which all show the “Ventricle” is a root in the causal
graph and “Fusiform” is at the end of the chain, which is aligned with prior work Nestor
et al. (2008). The presence of the edge “Hippocampus → Entorhinal” is also consistent with
literature Krumm et al. (2016); Planche et al. (2022). In comparison, baselines’ outputs are
less interpretable (Fig 8; more results are in Appendix D). The outputs of DYNOTEARS
and linear Granger contain hardly any edge between ROI volumes while the outputs of
cLSTM and eSRU have bidirectional edges.

(a) Only ROI volumes (b) ROI volumes & cognitive tests (c) Extended set of variables

Figure 7: GLACIAL’s predicted interaction of ADNI biomarkers. ROI volumes are in red,
cognitive tests are in black, and the rest are in blue. ABETA: amyloid beta,
PTAU: phosphorylated tau. Edge weights are frequencies at which edges were
detected in multiple runs.

One potential issue with GLACIAL’s output is that some cognitive scores are causal
parents to some ROI volumes. This might be due to the no hidden confounder assumption
being violated. Another reason might be measurement noise. For example, based on our
understanding of Alzheimer’s dynamics, changes in volumetric measurements should cause
cognitive decline, and therefore atrophy in MRI biomarkers should precede changes in clin-
ical scores. However, initial volumetric changes may be too small to be captured in MRI
images and this may affect the inferred graph.

6. Discussion

Longitudinal studies, in which multiple subjects are sparsely observed for a limited num-
ber of times, are particularly common in population health applications. Longitudinal
studies often track many variables, which are likely governed by nonlinear dynamics that
might have subject-specific idiosyncrasies. Yet, longitudinal studies are not amenable to the
popular Granger causality (GC) analysis, since GC was developed to analyze a single mul-

2237



Nguyen et al.

Figure 8: Baseline approaches’ predicted interaction of ADNI biomarkers.

tivariate densely sampled timeseries. Furthermore, real-world longitudinal data often suffer
from widespread missingness. We developed GLACIAL which combines the GC framework
with a machine learning based prediction model to address the need for a method to find
causal relations of numerous variables in longitudinal multi-modal medical imaging studies.
GLACIAL treats subjects as independent samples and uses average prediction accuracy on
hold-out subjects to test for causal relations.

GLACIAL exploits a single multi-task neural network trained with input feature dropout
to efficiently probe links. GLACIAL places no restriction on the design of the neural
network predictor. This flexibility allows future extensions of our work. For example,
Transformers (Vaswani et al., 2017) or Neural ODEs (Chen et al., 2018) can be used instead
of RNN.

Although we showed GLACIAL working well in many settings (varying lag-times, noise
levels, and missingness degree), there are some questions remaining that need further in-
vestigation. Even though the ADNI dataset is small by machine learning standard, many
scientific datasets are even smaller so characterizing the performance on small datasets
would be interesting. In addition, it would be interesting to use GLACIAL to analyze more
medical imaging datasets (Gutiérrez-Zúñiga et al., 2022; Basaia et al., 2022). We focused
on continuous variables since they are the most common but extending GLACIAL to dis-
crete variables by adopting techniques in (Peters et al., 2010; Cai et al., 2018; Huang et al.,
2018) would make GLACIAL analysis applicable to more longitudinal studies. Further-
more, studying GLACIAL’s behaviors under missingness other than MCAR is important
despite GLACIAL outputting plausible graphs on real-world data (ADNI). Missing at ran-
dom (MAR; missingness probabilities depend on the values of the observed features) and
missing not at random (MNAR; missingness depends on the values of the ,unobserved fea-
tures) are different from MCAR, and MNAR in particular may require different treatments.
Besides, GLACIAL assumes that there is no feedback, hidden confounder, or instantaneous
effect. Thus, before applying GLACIAL, it is critical to verify whether these assumptions
are reasonable to ensure that causal relations inferred by GLACIAL are valid. The third
assumption in particular requires that the sampling resolution is high enough to capture
transient changes (e.g. impulses) or temporal orderings between causal pairs with short time
lags. Although causal discovery when some assumptions are violated has been studied in
the past (for example, presence of hidden confounders (Spirtes et al., 2000) or presence of
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instantaneous effects (Danks and Plis, 2013)), extending these techniques to longitudinal
studies is still an open question. We leave these questions for future work.

Similar to other causal discovery methods, GLACIAL can offer valuable insights into
relationships between variables. However, intentional or unintentional misuse may lead to
harmful consequences. Causal discovery methods, such as GLACIAL, identify potential
causal links based on statistical patterns in the data, so biased data collection may lead to
misleading findings. These flawed findings may further lead to misguided medical treatments
or clinical decisions that can harm vulnerable populations. Moreover, violations of modeling
assumptions and measurement errors can contribute to mistakes in the inferred graphs.
Thus, it is important to ensure unbiased data collection as well as to corroborate any
identified causal links using further experimentation and follow-up study designs to mitigate
potential risks when applying causal discovery.
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Steudel, and B Schölkopf. Information-geometric approach to inferring causal directions.
Artificial Intelligence, 182:1–31, 2012.
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Structural progression of alzheimer’s disease over decades: The mri staging scheme. brain
communications, 4 (3), article fcac109, 2022.

Zhao Qing, Feng Chen, Jiaming Lu, Pin Lv, Weiping Li, Xue Liang, Maoxue Wang, Zhengge
Wang, Xin Zhang, Bing Zhang, et al. Causal structural covariance network revealing
atrophy progression in alzheimer’s disease continuum. Human Brain Mapping, 42(12):
3950–3962, 2021.

Joseph Ramsey, Madelyn Glymour, Ruben Sanchez-Romero, and C Glymour. A million
variables and more: the fast greedy equivalence search algorithm for learning high-
dimensional graphical causal models, with an application to functional magnetic reso-
nance images. International Journal of Data Science and Analytics, 3(2):121–129, 2017.

Hans Reichenbach. The direction of time, volume 65. Univ of California Press, 1956.

Alexander G. Reisach, Christof Seiler, and Sebastian Weichwald. Beware of the simulated
dag! causal discovery benchmarks may be easy to game. Advances in Neural Information
Processing Systems, 34:27772–27784, 2021.

Alard Roebroeck, Elia Formisano, and Rainer Goebel. Mapping directed influence over the
brain using granger causality and fmri. NeuroImage, 25(1):230–242, 2005.

Jakob Runge. Discovering contemporaneous and lagged causal relations in autocorrelated
nonlinear time series datasets. In Conference on Uncertainty in Artificial Intelligence,
pages 1388–1397. PMLR, 2020.

Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou, Ethan
Deyle, C Glymour, Marlene Kretschmer, Miguel D Mahecha, Jordi Muñoz-Maŕı, et al.
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Appendix A. Additional Details about GLACIAL

A.1 Granger Causality MSE Test

Let Xt and Xt = {X0, . . . ,Xt−1} denote a time-varying random variables and its history.
Let Ωt = Xt ∪ Yt ∪ . . . be the union of all historical variables available at time t. The
general GC hypothesis is: Y causing X ⇒ there exists some event A and t ∈ [T ] such that

Pr(Xt ∈ A|Ωt) ̸= Pr(Xt ∈ A|Ωt \Yt)

Equivalently, we have:

Pr(Xt|Ωt) = Pr(Xt|Ωt \Yt), ∀t ∈ [T ]

⇒ Y does not cause X

In general it is not possible to compare these conditional probabilities based on observed
timeseries data. A practical approach is to compare conditional expectations:

E[Xt|Ωt]
?
= E[Xt|Ωt \Yt].

Note that conditional expectations can be infeasible to compare, so we often need further
assumptions. One observation is that the conditional expectation is the optimal estimator
that minimizes the mean square error (MSE). This gives rise to a GC test that compares
the MSE of least-squares predictors. In this approach, we conclude that “Y causes X” if:

MSE(Xt,E[Xt|Ωt]) < MSE(Xt,E[Xt|Ωt \Yt]) (5)

Note that, in above equation the right hand side is larger than or equal to the left hand
side because, in general, the least-square loss will be smaller with more history.

In practice, the implementation of the GC MSE test often relies on two more as-
sumptions. The first is the stationarity assumption. That is, we suppose E[Xt|Ωt] and
E[Xt|Ωt \Yt] are independent of t. Second, we assume the stochastic processes are Marko-
vian and thus a finite history (often just the prior timepoint) is sufficient for making the
least-square forecast. In our framework, the Markovian assumption can be relaxed because
the RNN forecast model can digest all available history.

A.2 GLACIAL’s First Heuristic Justification

In this section, we will provide some justification for our post-processing heuristic that
removes one of the arrows of a bi-directional edge. We will consider a scenario where
only one previous timepoint is given to predict the future timepoint. Furthermore, we will
suppose that we have infinite data and infinite capacity models that allow us to estimate
the unknown parameters and conditional expectations exactly.

We will assume following data generation process (Fig 9) with constants a, b, c > 0 and
independent and identically-distributed, zero-mean additive errors ϵX,t, ϵY,t

Xt := aXt−1 + bXt−2 + ϵX,t (6)

Yt := cXt−1 + ϵY,t (7)

E[ϵ2X,t] = σ2
X > 0; E[ϵ2Y,t] = σ2

Y > 0 (8)
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Back up 1 step in time

Xt−1 = aXt−2 + bXt−3 + ϵX,t−1 (9)

Yt−1 = cXt−2 + ϵY,t−1 (10)

XtXt−1Xt−2Xt−3

YtYt−1Yt−2Yt−3

Figure 9: Data generation. X is an order-2 auto-regressive process and X causes Y
(X→Y ).

Computing MSE(Xt,E[Xt|Xt−1, Yt−1])

Xt−2 =
1

c

(
Yt−1 − ϵY,t−1

)
from (10) (11)

Xt = aXt−1 +
b

c

(
Yt−1 − ϵY,t−1

)
+ ϵX,t from (6) and (11)

= aXt−1 +
b

c
Yt−1 −

b

c
ϵY,t−1 + ϵX,t (12)

Since ϵY,t−1, ϵX,t are independent of Xt−1, Yt−1, from (12):

⇒ E[Xt|Xt−1, Yt−1] = aXt−1 +
b

c
Yt−1 (13)

⇒ Xt − E[Xt|Xt−1, Yt−1] = −b

c
ϵY,t−1 + ϵX,t (14)

MSE(Xt,E[Xt|Xt−1, Yt−1]) = E[(Xt − E[Xt|Xt−1, Yt−1])
2]

= E
[(

− b

c
ϵY,t−1 + ϵX,t

)2]
=

b2

c2
σ2
Y + σ2

X (15)

Computing MSE(Xt,E[Xt|Xt−1])

Xt−2 =
1

a
Xt−1 −

b

a
Xt−3 −

1

a
ϵX,t−1 from (9) (16)

Xt = aXt−1 + b
(1

a
Xt−1 −

b

a
Xt−3 −

1

a
ϵX,t−1

)
+ ϵX,t from (6) and (16)

=
(
a +

b

a

)
Xt−1 −

b2

a
Xt−3 −

b

a
ϵX,t−1 + ϵX,t (17)
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Since ϵX,t−1, ϵX,t are independent of Xt−1, and assuming the correlation between Xt−1 and
Xt−3 is weak, from (17):

E[Xt|Xt−1] ≈
(
a +

b

a

)
Xt−1 (18)

Xt − E[Xt|Xt−1] ≈ −b2

a
Xt−3 −

b

a
ϵX,t−1 + ϵX,t (19)

MSE(Xt,E[Xt|Xt−1]) ≈ E[(Xt − E[Xt|Xt−1])
2]

≈ E
[(

− b2

a
Xt−3 −

b

a
ϵX,t−1 + ϵX,t

)2]
(20)

≈ b4

a2
E[X2

t−3] +
b2

a2
σ2
X + σ2

X (independent) (21)

Estimating ∆MSE(X|Y )

∆MSE(X|Y ) = MSE(Xt,E[Xt|Xt−1]) −MSE(Xt,E[Xt|Xt−1, Yt−1]) (22)

≈
( b4

a2
E[X2

t−3] +
b2

a2
σ2
X + σ2

X

)
−
(b2
c2
σ2
Y + σ2

X

)
(23)

≈ b4

a2
E[X2

t−3] +
b2

a2
σ2
X − b2

c2
σ2
Y (24)

Computing MSE(Yt,E[Yt|Xt−1, Yt−1])

⇒ E[Yt|Xt−1, Yt−1] = cXt−1 from (7) (25)

⇒ Yt − E[Yt|Xt−1, Yt−1] = ϵY,t from (7) (26)

⇒ MSE(Yt,E[Yt|Xt−1, Yt−1])

= E[(Yt − E[Yt|Xt−1, Yt−1])
2] = E[(ϵY,t)

2] = σ2
Y (27)

Estimating MSE(Yt,E[Yt|Yt−1])

From (9) and (11):

Xt−1 =
a

c

(
Yt−1 − ϵY,t−1

)
+ bXt−3 + ϵX,t−1 (28)

From (7) and (28):

Yt = c
[a
c

(
Yt−1 − ϵY,t−1

)
+ bXt−3 + ϵX,t−1

]
+ ϵY,t

= aYt−1 − aϵY,t−1 + bcXt−3 + cϵX,t−1 + ϵY,t (29)

Since ϵX,t−1, ϵY,t are independent of Yt−1, and assuming the correlation between Yt−1

and Xt−3 is weak, from (29):

⇒ E[Yt|Yt−1] ≈ aYt−1 (30)

⇒ Yt − E[Yt|Yt−1] ≈ −aϵY,t−1 + bcXt−3 + cϵX,t−1 + ϵY,t (31)
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⇒ MSE(Yt,E[Yt|Yt−1]) = E[(Yt − E[Yt|Yt−1])
2]

≈ E[(−aϵY,t−1 + bcXt−3 + cϵX,t−1 + ϵY,t)
2] (32)

≈ a2σ2
Y + b2c2E[X2

t−3] + cσ2
X + σ2

Y (independent) (33)

Estimating ∆MSE(Y |X)

∆MSE(Y |X) = MSE(Yt,E[Yt|Yt−1]) −MSE(Yt,E[Yt|Xt−1, Yt−1]) (34)

≈ (a2σ2
Y + b2c2E[X2

t−3] + c2σ2
X + σ2

Y ) − (σ2
Y ) (35)

≈ a2σ2
Y + b2c2E[X2

t−3] + c2σ2
X (36)

Since ∆MSE(Y |X) > 0, edge X→Y is always detected. Edge Y→X is (falsely) detected
if ∆MSE(X|Y ) > 0. The heuristic needs to remove this falsely detected edge. We can show
that if false detection happens, our heuristic of comparing ∆MSE(Y |X) and ∆MSE(X|Y )
(which is based on the t-statistics) will show the true direction. In other words, let’s show
that if ∆MSE(X|Y ) > 0, then ∆MSE(Y |X) − ∆MSE(X|Y ) > 0.

∆MSE(X|Y ) > 0 ⇔ b4

a2
E[X2

t−3] +
b2

a2
σ2
X − b2

c2
σ2
Y > 0 ⇔ b2E[X2

t−3] >
a2

c2
σ2
Y − σ2

X (37)

∆MSE(Y |X) − ∆MSE(X|Y )

≈ (a2σ2
Y + b2c2E[X2

t−3] + c2σ2
X) −

( b4

a2
E[X2

t−3] +
b2

a2
σ2
X − b2

c2
σ2
Y

)
(38)

≈ a2σ2
Y + b2E[X2

t−3]
(
c2 − b2

a2

)
+ c2σ2

X − b2

a2
σ2
X +

b2

c2
σ2
Y (39)

Let Diff = ∆MSE(Y |X) − ∆MSE(X|Y ), from (37) and (39)

Diff > a2σ2
Y +

(a2
c2

σ2
Y − σ2

X

)(
c2 − b2

a2

)
+c2σ2

X − b2

a2
σ2
X +

b2

c2
σ2
Y (40)

⇔ Diff > a2σ2
Y + a2σ2

Y − c2σ2
X − b2

c2
σ2
Y +

b2

a2
σ2
X +c2σ2

X − b2

a2
σ2
X +

b2

c2
σ2
Y (41)

⇔ Diff > 2a2σ2
Y > 0 (Q.E.D) (42)

Appendix B. Pseudo-code for Data Generation

Algorithm 2 shows the steps to generate data from a given causal graph G. First, the edge
weights are sampled. Then, for each subject, the timeseries are generated in topological
order. If a node has no parent, i.e., if it is a source node, its timeseries is specified by
the sample path f (Gaussian random-walk or sigmoid). The random-walk function is a
conventional choice while the sigmoid function yields trajectories that mimic the evolution
of many real-world dynamical systems (Jack Jr et al., 2013). A non-source node’s time-
series is the weighted sum of the lagged version of its parents’ timeseries. Next, Gaussian
measurement noise with standard deviation σ is added to the timeseries. Finally, a discrete
set of timepoints within a randomly-chosen observation window are extracted, mimicking a
real-world longitudinal study.
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• Gaussian random-walk: f(t) =
∑t

i=0N (0, 1)

• Sigmoid: f(t) = A
1+e−k(t−t0)

; A ∼ Unif(1, 2), t0 ∼ Unif(40, 60), k ∼ Unif(0.1, 0.3)

For random-walk timeseries, the noise variance σ is either 0.1 or 1.0 (smaller σ has no
visible effect). For sigmoid timeseries, σ = 0.001, 0.01, 0.1, 1.0. Since measurement noise
can (1) induce spurious causality between unrelated variables and (2) suppress true causal-
ity (Newbold, 1978; Glymour et al., 2019), it is important to benchmark across different
levels of measurement noise. For each set of parameters (f , lag-time L, and σ), we gener-
ated 5 different randomized datasets so as to estimate the standard error of the performance
metrics.

Algorithm 2 Data Generation

In: Causal graph G, sample path f , number of subjects n, number of timepoints m,
Lag-time L, measurement noise magnitude σ
Out: Dataset D = (X1, . . . , Xn)
Sample edge weight
For each u→v ∈ G
suv ∼ Rademacher();
muv ∼ Unif(0.5, 1);
wuv = suv ∗muv

Sample observation series of a subject
For each subject i
For each node v
b ∼ Unif(−0.5, 0.5) (bias term)
If v has no parent
sv[t] = b + f [t] (time t ∈ [0, 100])

Else
sv[t] = b +

∑
u,(u,v)∈Gwuv ∗ su[t− L]

sv[t] = sv[t] + N (0, σ) (measurement noise)
Si = {su, u ∈ G} (subject data)
tstart ∼ Unif(30, 70);
tend = tstart + m;
Xi = Si[tstart : tstart] (extract timepoints within window)

In addition to the linear structural causal model (SCM) shown in Algorithm 2, we also
experimented with 2 non-linear SCMs. One SCM takes a polynomial form (Eq. 43) while
the other takes a trigonometric form (Eq. 44).

cuv ∼ Unif(−1, 1) puv ∼ Unif(0.1, 1)

sv[t] = Unif(−0.5, 0.5) + N (0, σ) +
∑

u,(u,v)∈G

wuv ∗ |su[t− L] + cuv|puv (43)

sv[t] = Unif(−0.5, 0.5) + N (0, σ) +
∑

u,(u,v)∈G

wuv ∗ sin(su[t− L] + cuv) (44)
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Appendix C. Additional Simulation Results

C.1 More Repetitions

GLACIAL’s results in Section 5.1 were obtained by repeating 5-fold cross-validation for 4
times. Increasing the number of repetitions leads to higher F-1 score as shown by the trend
in Fig 10. However, the gap between 10 repetitions and 4 repetitions is not large enough to
justify the extra computational cost of repeating more than 4 times in Section 5.1. Another
interesting trend in Fig 10 is that the gap between 4 repetitions and 30 repetitions is more
apparent for missing data. Thus, when the data is noisy (more missing values), more
repetitions may yield more accurate results.

Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5
0.00

0.25

0.50

0.75

1.00
Random Walk, Lag=5

4 Reps 10 Reps 20 Reps 30 Reps
Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5

Sigmoid, Lag=5

(a) Lag-time (L) = 5

Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5
0.00

0.25

0.50

0.75

1.00
Random Walk, Lag=7

4 Reps 10 Reps 20 Reps 30 Reps
Rate=0.0 Rate=0.1 Rate=0.3 Rate=0.5

Sigmoid, Lag=7

(b) Lag-time (L) = 7

Figure 10: More repetitions of cross-validation lead to slightly better result at the expense
of running time.
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C.2 More Comparisons of GLACIAL against Baselines

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

PC FCI cMLP TCDF SRU SVAR-GFCI PCMCI+ GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 11: Average F1-scores at different lag-time and measurement noise for 7-node graph.
GLACIAL outperforms baselines in most settings of sample path, lag-time, and
measurement noise (also see Fig 3).

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.00

0.25

0.50

0.75

1.00
Random Walk, Noise=0.1

PC FCI cMLP TCDF SRU SVAR-GFCI PCMCI+ GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Random Walk, Noise=1.0

Figure 12: Average F1-scores at different lag-time and measurement noise for 39-node graph
(Gaussian random-walk). GLACIAL outperforms baselines in most settings
(also see Fig 4).
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C.3 Non-linear SCM simulations

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.00

0.25

0.50

0.75

1.00
Sigmoid, Noise=0.01

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Figure 13: F1-scores at different lag-time and measurement noise (polynomial SCM)

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.00

0.25

0.50

0.75

1.00
Sigmoid, Noise=0.01

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Figure 14: F1-scores at different lag-time and measurement noise (trigonometric SCM)

C.4 Constraint-based Baselines with Higher Threshold

The PC, FCI, and GFCI baselines are run multiple times using different data bootstraps,
resulting in multiple graphs. To combine the graphs, we only retain edges that appear more
than half of the runs. This procedure is similar to (Shen et al., 2020) although they used a
more conservative threshold (0.8) in their work. Fig 15 shows the results of the constraint-
based baselines when the threshold of 0.8 (80%) is used. Compared to the results in Fig 3,
this more conservative threshold led to worse performance in the baselines.

C.5 More Densely Sampled Data

In Section 5.1, each subject only has 6 timepoints (sparse observations) so linear GC did
not work well. Thus, we investigated a scenario more favorable for linear GC where for
when subjects have more timepoints (i.e. 24 timepoints). With more timepoints, linear GC
results improve slightly but are still worse than that of GLACIAL (Fig 16). Additionally,
using GC to estimate one causal graph for each subject could not find the correct graph
even with 24 timepoints (hence, result not reported).
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Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

PC FCI GFCI GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 15: Performance of PC, FCI, and GFCI when thresholded at 0.8 (80%).

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
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0.8
1.0

Random Walk, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.001

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.1

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7
0.0
0.2
0.4
0.6
0.8
1.0

Random Walk, Noise=1.0

Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=0.01

SnR GFCI cLSTM eSRU DYNOTEARS Linear GC GLACIAL
Lag=3 Lag=4 Lag=5 Lag=6 Lag=7

Sigmoid, Noise=1.0

Figure 16: Average F1-scores at different settings of sample path, lag-time and measure-
ment noise (7-node graph). Each subject has 24 timepoints. GLACIAL outper-
forms baselines in most settings.

Appendix D. Experiment on ADNI Dataset

D.1 Description of ADNI Variables

Table 2 shows the ADNI variables used and how they were measured (Data Modality).
These variables are complementary in what they measure. “ABETA” and “PTAU” mea-
sure the level of two proteins in cerebral spinal fluid that are indicative of Alzheimer’s dis-
ease. “FDG” measures brain cells’ metabolism while cognitive tests measure performance
in various areas such as general cognition, memory, language et cetera. The quantitative
variables derived from structural MRI scans (e.g. Hippocampus Volume) is often considered
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as a proxy of regional brain atrophy, or tissue loss linked to aging and/or neuro-degenerative
processes.

Table 2: ADNI variables used for causal discovery
Variable Description Data Modality

ABETA Amyloid beta Cerebral spinal fluid
FDG Fluorodeoxyglucose PET PET imaging
PTAU Phosphorylated tau Cerebral spinal fluid
ADAS13 ADAS-Cog13 Cognitive test
MMSE Mini-Mental State Examination Cognitive test
MOCA Montreal Cognitive Assessment Cognitive test
Entorhinal Entorhinal cortical volume MRI imaging
Fusiform Fusiform cortical volume MRI imaging
Hippocampus Hippocampus volume MRI imaging
MidTemp Middle temporal cortical volume MRI imaging
Ventricles Ventricles volume MRI imaging
WholeBrain Whole brain volume MRI imaging

We normalized the volumetric variables of each subject by dividing the measurements
by the subject’s intracranial volume, or total head size, which is typically constant in adult-
hood. This is a standard normalization done to account for inter-subject variability in head
sizes. FDG is a standardized uptake value ratio computed by dividing the average PET sig-
nal in an Alzheimer implicated region of interest to the signal in a control reference region.
The Cerebral Spinal fluid markers correlate with the accumulation of the two Alzheimer’s
associated pathological proteins in the brain, namely tau tangles and amyloid plaque.

D.2 Interpretation of ADNI Causal Graphs

The order of the volumetric variables in Fig 7a, 7b, and 7c are mostly consistent with
each other and prior literature on neuroimaging in aging and Alzheimer’s disease, where
the size of ventricles and whole brain are earliest MRI markers of aging, and Alzheimer’s
associated atrophy starts at the hippocampus, from where it spreads to cortical areas such
as entorhinal and fusiform.The causal chains that appear in all three graphs are:

• “Ventricles” → “WholeBrain” → “Hippocampus” → “Entorhinal” → “Fusiform”

• “Ventricles” → “WholeBrain” → “MidTemp” → “Fusiform”

The ordering of cognitive tests are also consistent across all graphs. When we examine the
ordering of variables from different data modalities, the causal chain of “Hippocampus” →
“ADAS13” → “MMSE” → “MOCA” is quite interesting. This implies that the atrophy of
the hippocampus, a brain region that plays a central role in memory and learning, leads to
worse performance in tasks measured by cognitive tests. The relationship between MMSE
and ADAS13 is surprising and deserves follow-up investigation, because classically MMSE
is thought of as the earlier marker of cognitive impairment and ADAS13 is a measure of
symptoms that appear later in Alzheimer’s disease. That said, to our knowledge, we are
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not aware of a study that examines the relationships between the temporal dynamics of
these test scores. Our results indicate that changes in ADAS13 might foreshadow changes
in MMSE.

Fig 17 shows the outputs of the Sort-N-Regress baseline and the remaining timeseries
baselines on the ADNI data. The output of Sort-N-Regress seems implausible because the
nodes FDG, PTAU, and ABETA are children of the MRI nodes. This contradicts the
established literature about Alzheimer’s disease in which indicates that the disease seems
to originates first from changes in FDG, PTAU, and ABETA (hence these nodes should
be roots instead of descendants). The outputs from PCMCI+ and TCDF are not very
informative as they lack edges between the ROIs. Although somewhat similar GLACIAL’s
output, output from SVAR-GFCI has a lot of bidirectional edges. The outputs of SRU and
cMLP also contain bidirectional edges. One of the possible reasons for the seemingly worse
performance of the baselines is the high missing rate in the ADNI data.

(e) SRU(d) cMLP

(c) PCMCI+

(a) SVAR-GFCI

(b) TCDF

(f) Sort-N-Regress

Figure 17: Baseline methods’ predicted interaction of ADNI biomarkers. ROI volumes are
in red, cognitive tests are in black, and the rest are in blue. ABETA: amyloid
beta, PTAU: phosphorylated tau.
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