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Abstract

Establishing the reproducibility of radiomic signatures is a critical step in the path to
clinical adoption of quantitative imaging biomarkers; however, radiomic signatures must
also be meaningfully related to an outcome of clinical importance to be of value for per-
sonalized medicine. In this study, we analyze both the reproducibility and prognostic
value of radiomic features extracted from the liver parenchyma and largest liver metastases
in contrast enhanced CT scans of patients with colorectal liver metastases (CRLM). A
prospective cohort of 81 patients from two major US cancer centers was used to establish
the reproducibility of radiomic features extracted from images reconstructed with different
slice thicknesses. A publicly available, single-center cohort of 197 preoperative scans from
patients who underwent hepatic resection for treatment of CRLM was used to evaluate the
prognostic value of features and models to predict overall survival. A standard set of 93
features was extracted from all images, with a set of eight different extractor settings. The
feature extraction settings producing the most reproducible, as well as the most prognos-
tically discriminative feature values were highly dependent on both the region of interest
and the specific feature in question. While the best overall predictive model was produced
using features extracted with a particular setting, without accounting for reproducibility,
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(C-index = 0.630 (0.603–0.649)) an equivalent-performing model (C-index = 0.629 (0.605–
0.645)) was produced by pooling features from all extraction settings, and thresholding
features with low reproducibility (CCC ≥ 0.85), prior to feature selection. Our findings
support a data-driven approach to feature extraction and selection, preferring the inclusion
of many features, and narrowing feature selection based on reproducibility when relevant
data is available.

Keywords: Radiomics, Texture Analysis, Reproducibility, Colorectal Liver Metastases,
Quantitative Imaging Biomarkers, Computed Tomography, Prospective Studies, Repro-
ducible Features

1. Introduction

Radiomic analysis as a field is predicated on the idea that radiological imaging contains
meaningful biological information contained in the patterns of intensity values within regions
of interest, which could contribute to a better understanding of patient health (Gillies et al.,
2016). The typical approach in radiomic studies is to extract a large number of pre-defined
quantitative imaging features from a region of interest, and then use machine learning
methods to reduce the dimensionality of the feature set and build models of a biological
correlate or a medical outcome of interest (Horvat et al., 2022). The promise of radiomics
to develop quantitative imaging biomarkers is of broad interest because it poses a non-
invasive means to characterize patient disease using routine clinical imaging. However, to
be clinically deployed, radiomic models must be widely validated, and their robustness to
variable imaging settings well-established.

In the present study, we are focused on contrast-enhanced abdominal computed tomog-
raphy (CT) of the liver for patients with colorectal liver metastases (CRLM). These patients
have an overall poor prognosis, which could potentially be improved by prognostic radiomic
signatures that could better target patients for surgery or chemotherapy. In patients with
liver metastases, radiomic models derived from contrast-enhanced CT have shown sub-
stantial prognostic capability in both survival modeling and prediction of chemotherapy
response (Fiz et al., 2020). Furthermore, although most studies focus on radiomic features
extracted from the metastases themselves, studies of CRLM have shown that features from
the liver parenchyma also contain important information when predicting hepatic disease-
free survival or overall survival after hepatic resection (Simpson et al., 2017), or progression-
free survival after radiotherapy (Hu et al., 2022b). With these applications in mind, in this
study we are seeking to gain a better understanding of the robustness of radiomic models
in contrast-enhanced CT of CRLM.

One way to study the robustness of radiomic models is to study the reproducibility
of the model inputs—that is, to understand how consistent the radiomic features are un-
der real-world variations that occur in image acquisition and reconstruction. Treating the
radiomic features as measurements drawn from radiological images, the reproducibility of
the features can be studied from a metrological perspective (Raunig et al., 2014), using
statistical measures such as the concordance correlation coefficient (CCC). Understand-
ing the reproducibility of radiomic features, however, is difficult given the many factors
affecting the results. Restricting the discussion to CT, scans are acquired from different
medical centers, using different scanners, with different imaging acquisition parameters and
protocols, after which the images are reconstructed with different algorithms, different res-
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olution parameters, and different kernels, all of which have been shown to affect feature
reproducibility (Zhao, 2021). Once the images are in hand, feature extraction itself is not
without concerns regarding reproducibility; while standardization efforts such as the Image
Biomarker Standardisation Initiative (IBSI) (Zwanenburg et al., 2020) have been instru-
mental in creating a common nomenclature and a standard set of well-defined features,
they do not provide a final answer in how to set the many configurable parameters which
can affect the final feature values computed by common software such as pyradiomics (van
Griethuysen et al., 2017).

In this study, we are considering feature reproducibility particularly when the slice
thickness used to reconstruct the CT scans is varied. When comparing features extracted
from CT images with thinner or thicker slices, studies have found that features from thinner
images are more reproducible across variations in segmentation (Hu et al., 2022a), or across
repeat imaging (Zhao et al., 2016), and may also produce more accurate models (He et al.,
2016; Li et al., 2018; Xu et al., 2022). In direct comparisons, many features had poor
reproducibility when comparing features from images with different slice thicknesses in a
variety of phantom studies (Zhao et al., 2014; Ger et al., 2018; Berenguer et al., 2018; Kim
et al., 2019; Varghese et al., 2019; Ligero et al., 2021; Ibrahim et al., 2022). Prospective
studies producing multiple reconstructions for each patient have reproduced this result
on patient images for lung cancer (Lu et al., 2016; Park et al., 2019; Erdal et al., 2020;
Yang et al., 2021; Emaminejad et al., 2021), and liver metastases (Meyer et al., 2019). Poor
feature reproducibility with respect to slice thickness is concerning because many real-world
retrospective or multi-site data sets include images with a range of different slice thicknesses
due to variations in local protocols (Ger et al., 2018). Although image interpolation to a
common, isotropic voxel size is considered a best practice for preprocessing during feature
extraction (Zwanenburg et al., 2020) in order to ensure the image features are comparable
between images with different voxel sizes, the optimal choice of resolution and resampling
algorithm is undecided. Furthermore, resampling to a common voxel size appears, on its
own, to be insufficient to overcome the inconsistency of feature values due to slice thickness
variation, except in a small subset of features (Shafiq-Ul-Hassan et al., 2017; Shafiq-ul
Hassan et al., 2018).

To further complicate matters, it has been shown that reproducibility is not necessar-
ily consistent across cancer types, even for a single modality such as CT (van Timmeren
et al., 2016). However, in a systematic review of radiomics reproducibility studies, Traverso
et al. (2018) found that the literature was limited to a small number of cancer types, with
the greatest number of studies addressing lung cancers, amongst which CT was the most
common imaging modality. Across these studies there was not a clear consensus on the
most reproducible features, although in CT they found agreement that first-order features
tended to be more reproducible than higher-order texture features. Ultimately, it seems
that the reproducibility of features is not easily generalized across different anatomies or
cancers. Therefore, reproducibility studies for the region of interest (ROI) and disease under
consideration is an important part of the validation any radiomics-based imaging biomarker.

In this study we present an analysis of the relationship between the reproducibility
and prognostic value of radiomic features drawn from contrast enhanced CT of CRLM.
We present a reproducibility analysis of radiomic features on a cohort of 81 prospectively
enrolled patients from two major US cancer centers, who underwent contrast enhanced
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abdominal imaging with a controlled and systematically varied protocol. Our analysis is
primarily focused on the effects of slice thickness chosen at reconstruction time. Features
were extracted from the largest liver metastasis and the liver parenchyma from each subject
using a variety of different configurations, varying the level of resampling, and the method
of aggregation used in computing the higher-order texture features. To investigate the rela-
tionship between reproducibility and prognostic value, we conducted an in depth univariate
and multivariable survival modeling analysis on an independent, publicly available data set
of 197 preoperative contrast enhanced CT scans of patients who underwent hepatic resection
to treat CRLM (Simpson et al., 2023, 2024).

This paper is a significant expansion of our previous work (Peoples et al., 2023), with
a greater focus on the relationship between the reproducibility and prognostic value of the
radiomic features under consideration. In this paper, we are less concerned with finding
the feature extraction settings that produce the most reproducible features. Instead, we
focus on the integration of reproducibility information into the development of prognostic
radiomic signatures. We present a joint, univariate analysis of both the reproducibility
and prognostic discriminative ability of the features, taking a multi-objective optimization
point of view. The multivariable analysis was revised to use a standard feature selection
algorithm, and to conduct many iterations of the cross-validation to ensure our results were
stable. Additional details are provided throughout the paper, giving greater context on
the methodology, more visualisation and discussion of the results, and more interpretation
of how our results fit into the greater context of the literature on the reproducibility of
radiomics. Code for all analysis is available at github.com/jpeoples/melba2024.

2. Methods

2.1 CT Imaging and Segmentation

Contrast enhanced, portal venous phase CT scans were prospectively collected from a total
of 81 patients with CRLM from two institutions, Memorial Sloan Kettering Cancer Center
(New York, NY) (MSK) (n=44) and MD Anderson Cancer Center (Houston, TX) (MDA)
(n=37), with institutional review board approval and informed consent.1 Every scan was
collected on a multi-detector CT scanner (Discovery CT750 HD; GE Healthcare, Madison,
WI, USA) with 64 detector rows, and 0.625 mm detector width, for a total collimation
width of 40 mm. The images were collected with a tube voltage of 120 kVp, and automated
tube current modulation using GE Smart mA with a noise index of 14 (MSK) or 11 (MDA).
The tube current range varied between centers, with MSK using range 220-380 mA, while
MDA used range 275-650 mA. The gantry rotation time was 0.7 s with pitch factor 0.984
for MSK, and 0.5 s with pitch factor 0.516 for MDA. All images were reconstructed with
the standard soft tissue convolution filter.

1. Note that all scans used to generate the results in this paper are consistent with the standard clinical
acquisitions at each site, that would have been acquired for these patients regardless of their involvement
in the study. Informed consent was required because the full study protocol includes a second scan, taken
just before or after the usual scan (within ±15 s), to capture the test-retest repeatability of radiomic
features in the presence of contrast. These results are not included in the present paper because the
add-on scans were not processed at the time of preparation.
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To study the reproducibility of radiomic features with respect to image reconstruction,
each patient scan was retrospectively reconstructed with different slice thicknesses and levels
of adaptive statistical iterative reconstruction (ASiR) after image acquisition. In particular,
every combination of three different slice thicknesses—2.5 mm, 3.75 mm, 5 mm—and seven
different levels of ASiR—from 0% (equivalent to filtered back-projection), to 60% in incre-
ments of 10%—were generated, giving a total of 3× 7 = 21 reconstructions for every scan.
In all cases, the slice thickness and slice interval were equal, such that the reconstructed
slices were spatially contiguous, and non-overlapping.2 Images were stored and transferred
in Digital Imaging and Communications in Medicine (DICOM) format after deidentifica-
tion from both MSK and MDA. All CT data was converted into Neuroimaging Informatics
Technology Initiative (NIfTI) format for further processing.

2.2 Segmentation

A single reconstruction (slice thickness 5 mm and ASiR 20%) was chosen as the reference
reconstruction for each patient, for manual segmentation verification and correction by an
experienced radiologist (R. D.). The choice of 5 mm and 20% ASiR for the reference was
made to more closely match the standard-of-care clinical imaging protocol at the radiolo-
gist’s home institution (MSK). The segmentation of these reference scans was completed
in two phases: first, an automated segmentation was generated, after which the radiologist
verified and corrected each mask in 3D Slicer (Kikinis et al., 2013). The initial segmen-
tations were generated using an nnU-net model (Isensee et al., 2021) trained on a public
database of 197 CT scans from patients with CRLM (Simpson et al., 2023, 2024), available
from the Cancer Imaging Archive (TCIA) (Clark et al., 2013). Details on the develop-
ment of this model can be found in several previous publications (Hamghalam et al., 2021;
Mojtahedi et al., 2022; Hamghalam et al., 2023). After the radiologist corrected the seg-
mentations for the reference reconstruction, segmentations for other slice thicknesses were
generated by resampling the reference segmentation using nearest-neighbor interpolation
with the Simple ITK software library. No changes were made to the segmentations for re-
constructions with different ASiR, given that the tissue being imaged does not change in a
given slice between ASiR levels.

2.3 Radiomic Feature Extraction

Features were extracted from every image using pyradiomics (van Griethuysen et al., 2017),
which is one of several open-source packages implementing a large set of IBSI-compliant fea-
tures. Two 3D ROIs were used: the largest tumor within the liver, and the liver parenchyma
(with all tumors and vessels excluded). The pyradiomics library has seven default classes
of features: shape, first order, gray level co-occurrence matrix (GLCM), gray level depen-
dence matrix (GLDM), gray level size zone matrix (GLSZM), gray level run length ma-
trix (GLRLM), neighboring gray-tone difference matrix (NGTDM). In this study we used

2. Because the CT scanners in this study (GE Discovery CT750) have an equal number of detectors and
channels, the thinnest possible slices (corresponding to a single detector row width of 0.625 mm) are
always acquired, and the slice thickness is applied only at reconstruction time, grouping data from
multiple detector rows to produce thicker slices. In our case, 2.5 mm, 3.75 mm, and 5 mm slice thicknesses
correspond to grouping 4, 6, or 8 individual 0.625 mm rows.
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Table 1: Feature counts by class.

Feature Class Count

First order 18
GLCM 24
NGTDM 5
GLDM 14
GLRLM 16
GLSZM 16

Total 93

all feature classes, with the exception of shape features, which were excluded because there
was only one reference segmentation per patient, and therefore any variations across recon-
structions would only reflect the effects of interpolation. From the remaining six classes, all
default features were included. Although pyradiomics supports the extraction of features
from a variety of derived images, in addition to the original intensity image, we did not
include any analysis of these derived image features. The total number of features used in
this study is broken down by feature class in Table 1, and a complete list is provided in
Table 6 in the appendix.

2.3.1 Terminology

Before continuing, we will establish some key terminology used throughout the remainder of
this paper. We will frequently refer to two classes of radiomic features: first-order features,
and texture features. For our purposes, first-order features are those that are computed
strictly from the intensity histogram for all voxels in the ROI, and corresponds to the first
order feature class in pyradiomics. Texture features, on the other hand, will be used
strictly to refer to the remaining classes of higher-order features—GLCM, GLDM, GLSZM,
GLRLM, and NGTDM—which share the common factor of accounting for relationships
between the intensities of neighboring voxels. Note that this usage mirrors the terminology
used by IBSI (Zwanenburg et al., 2020).

2.3.2 Preprocessing

A typical radiomic feature extraction pipeline includes a number of image preprocessing
steps prior to feature computation. In our feature extraction, there were three preprocessing
steps that every image underwent: image resampling, mask resegmentation, and intensity
discretization.

Image resampling refers to the process of altering the input image resolution using an
interpolation process. Given that texture features take account of relationships between
neighboring voxels, resampling is important, because otherwise the neighbors being com-
pared would not be an equal physical distance apart across images with different resolution,
changing the meaning of the feature. To resolve this issue, the IBSI reference manual (Zwa-
nenburg et al., 2016) recommends resampling images to a common resolution. Furthermore,
the IBSI manual recommends a common isotropic resampling, in order to ensure the rota-
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tional invariance of 3D texture features, which account for relationships between neighboring
voxels in all 3D directions. Because radiomic features depend on both the underlying CT
image, and a segmentation of the ROI, when applying resampling, both the image and
segmentation mask must be interpolated.

Mask resegmentation refers to the removal of voxels outside of a preconfigured range
when computing the first-order and texture features. Although Zwanenburg et al. (2016)
do not give specific recommendations about the optimal settings for resegmentation, it
is commonly applied to ensure that outlier intensity values (due to small errors in the
segmentation mask, or due to artifacts) do not skew the resulting feature distributions.

Intensity discretization (or quantization) is a binning process used to reduce the number
of unique intensity values in the image, which is used in the computation of texture features,
as well as some first-order features which require a probability density based on the intensity
histogram. Discretization is known to have a substantial effect on feature values (Shafiq-Ul-
Hassan et al., 2017), although the effect on feature reproducibility may be limited (Larue
et al., 2017).

In this study, all features were computed using a discretization level of 24 bins. The
masks were resegmented using a window of [−50, 350] Hounsfield units (HU), in order to ex-
clude metal artifacts (stents, etc), as well as rare and implausible outlier intensities. All CT
images were interpolated using B-splines, while the segmentation masks were interpolated
using nearest-neighbor interpolation, which are the default algorithms in pyradiomics. We
tested several resampling resolutions, which are described in greater detail below.

2.3.3 Texture Feature Aggregation

The IBSI reference manual (Zwanenburg et al., 2016) breaks feature aggregation into three
categories—2D, 2.5D, and 3D. The exact details of how the aggregation works varies across
the classes of texture features, but the key factors are as follows.

3D vs 2D or 2.5D: All texture features consider the relationships between neighboring
voxels. The first key factor in the aggregation methods is that while 3D aggregation includes
neighbors from any direction in three dimensions, 2D and 2.5D aggregation only considers
neighboring voxels within the same axial plane.

2.5D vs 2D: The second key factor differentiates 2D and 2.5D methods. Each class of
texture feature is defined by an underlying matrix representing some aspect of the relation-
ships between neighboring voxels. Individual features are then defined in terms of equations
operating on this matrix. For 2D aggregation, the matrix is computed independently for
each slice, and the resulting features are merged across slices by averaging. In the case of
2.5D aggregation, a single matrix is computed, which includes relationships from all slices,
which is then used to compute the features in the usual way. This differs from 3D aggre-
gation in that for 2.5D aggregation, only neighbors which share the same axial plane are
considered, while in 3D aggregation, all neighbours in all three dimensions are included.

Directional vs non-directional: Another factor is whether the matrix underlying the
feature class is defined directionally or not. The GLCM and GLRLM are both defined per
direction. Taking symmetry into account, this means that there are four or thirteen unique
GLCM/GLRLM in 2D or 3D respectively. Therefore, the matrices for each direction can
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Table 2: Aggregation methods by feature class.

Aggregation

Type 2.5D 3D Feature Classes

Directional JJUI ITBB GLCM, GLRLM
Non-directional 62GR KOBO NGTDM, GLDM, GLSZM

be used to derive directional features, which can then be averaged, or the matrices can be
merged via addition and used to compute single features. In the present work, we rely on
the former approach for both 3D and 2.5D aggregated features, which corresponds to the
IBSI-defined classes ITBB and JJUI, respectively.

The matrices underlying the remaining classes—GLDM, NGTDM, GLSZM—consider
neighbors in all included directions in a single matrix. Therefore, no directional merging
takes place. For these, 2D aggregation would compute a matrix per slice, which would
then be used to derive per-slice features, which could be averaged; 2.5D aggregation would
merge the 2D matrices across all slices, before computing features; 3D aggregation would
compute a single matrix for the entire ROI, because neighbors in all directions are counted.
In the present work we are using both 2.5D and 3D aggregation, which correspond to the
IBSI-defined classes 62GR and KOBO, respectively.

A breakdown of the texture feature classes and the aggregation methods we are using
in the present study is given in Table 2.

2.3.4 Resampling and Aggregation Variants

Because our images are substantially anisotropic, with a larger axial slice thickness than in-
plane pixel size, we wanted to investigate the optimality of resampling to an isotropic voxel
size per the IBSI recommendations (Zwanenburg et al., 2016). Accordingly, we investigated
three different levels of resampling: 1 × 1 × 1 mm, 0.85 × 0.85 × 0.85 mm, and 0.85 ×
0.85 × 2.5 mm, where 1 mm was chosen as a typical value from the radiomics literature,
0.85 mm was chosen as the median in-plane pixel spacing in the data set, and 2.5 mm was
chosen as the 10th-percentile z-axis spacing, in analogy to the nnU-net resampling method
for anisotropic imaging data sets (Isensee et al., 2021). The original distribution of in-plane
pixel sizes in the data set prior to resampling is shown in Figure 1.

We also chose to extract features with both 3D and 2.5D feature aggregation at all resam-
pling levels, to investigate whether 2.5D aggregation might be more suitable in anisotropic
imaging. Because 2.5D aggregation never includes comparisons of voxels in neighboring
axial planes, maintaining a common z-axis resolution is also not necessary for features to
remain comparable. Therefore, in addition to the three previously described resampling
levels, we also tried resampling the images to 0.85 mm or 1 mm in-plane resolutions, while
preserving the original z-axis resolution, and extracting only 2.5D aggregated features.

All the aforementioned configurations led to a total of eight distinct feature extraction
settings, which are summarized in Table 3. The table also introduces a naming scheme for
these feature extraction settings, in order to enable the comparison of results across methods.
In the naming scheme, the voxel resolution is indicated by the letters “L” (large, i.e. 1 mm),
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Figure 1: A histogram of the in-plane pixel spacing for images in our dataset. Pixel spacing
was consistent across all reconstructions, so only counts for the reference recon-
structions (5 mm slice thickness and 20% ASiR) are shown.

Table 3: Feature extraction methods.

Resampling (mm)

Name In-plane z-axis Aggregation

L2i 1 None 2.5D
L2 1 1 2.5D
L3 1 1 3D
S2i 0.85 None 2.5D
S2 0.85 0.85 2.5D
S3 0.85 0.85 3D
A2 0.85 2.5 2.5D
A3 0.85 2.5 3D

“S” (small, i.e., 0.85 mm), and “A” (anisotropic, i.e. 0.85 × 0.85 × 2.5 mm). The feature
aggregation is indicated by a number “2” or “3”, for 2.5D or 3D aggregation, respectively.
Finally, a lower-case “i” is appended to the name to indicate that the resampling was
restricted to in-plane only, preserving the z-axis resolution.

2.4 Reproducibility Analysis

The CCC (Lin, 1989) was used to measure reproducibility of radiomic features. The first
phase of the analysis was restricted to the reference ASiR level of 20%. The standard
pairwise CCC was computed for every feature across all pairs of slice thicknesses (2.5 mm
vs. 3.75 mm, 2.5 mm vs. 5 mm, 3.75 mm vs 5 mm). The paired Wilcoxon sign-rank
test (Wilcoxon, 1945) was used to test the statistical significance of the change in CCC
between slice thicknesses.
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Figure 2: A histogram of the slice thickness for images in the survival data set. Slice
thicknesses fell in the range [0.8, 7.5] mm.

The second phase of the analysis used a linear mixed model (LMM) for each feature in
order to compute a generalized CCC using the data from all three slice thicknesses (Carrasco
and Jover, 2003). In this model, the reconstructions with different ASiR levels were also
included, and controlled for as a fixed-effect when computing the CCC. In brief, using this
approach, an LMM is computed for each feature, which is used to estimate the variance
due to subject, σ2

s , the variance due to both slice thickness, σ2
t and ASiR, σ2

a, along with
an error term, σ2

e . Following Carrasco and Jover (2003), the generalized CCC is then

CCC =
σ2
s

σ2
s + σ2

t + σ2
e

. (1)

For each feature, we used this method to compute a spectrum of CCCs, across all feature
extraction settings, and ROIs.

2.5 Survival Analysis on Independent Data Set

The reproducibility of a feature is an independent consideration from its value as a predictor
in a given context. Ultimately, in radiomics the goal is to model a given outcome, and
therefore, the predictive or prognostic values of features can not be sacrificed in order to
create reproducible radiomic signature. To address this concern we performed survival
analysis on the aforementioned public data set of 197 CRLM patients (Simpson et al.,
2023, 2024). In this data set, the reproducibility of features across slice thickness is an
important consideration, because thickness varied widely across scans (range [0.8, 7.5] mm,
see Figure 2). All scans in this data set were acquired prior to a hepatic resection to
treat CRLM, and the repository includes right-censored data on overall survival time post-
operation. For each of these pre-treatment scans, we extracted features using all eight of
the different feature extractor settings previously described. In each case, the settings used
to configure pyradiomics were identical to those used on the reproducibility dataset.
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We completed the survival analysis in two phases, the first looking at univariate relation-
ships of the radiomic features with overall survival, and the second considering multivariable
models. In the first phase we computed the discriminative ability of each individual feature
with respect to overall survival, as measured by Harrell’s C-index (Harrell et al., 1996).
Features with negative discriminative ability (C-index < 0.5) were negated, ensuring all
C-index values fell in the range [0.5, 1].

In the second phase of the analysis, we did a repeated 10-fold cross-validation of a
multivariable Cox proportional hazards (CPH) model building procedure. Features from
both ROIs were combined into one larger set for feature selection. We first restricted the
candidate features to those with CCC ≥ CCCt in the reproducibility analysis, where CCCt

was a predetermined threshold. The model building process in each iteration then consisted
of a feature selection, followed by CPH modeling. Features were selected by computing the
univariate C-index for each feature, as described above, and removing any with C-index <
0.55. After this, univariate CPH models were constructed for each remaining feature, and
removed whenever the feature was not significant with p < 0.1.3 Finally, the remaining
features were reduced down to a predetermined number of features using the minimum
redundancy, maximum relevancy (mRMR) feature selection algorithm (Ding and Peng,
2005). The 10-fold cross validation was repeated 100 times in order to get a stable estimate
of the performance of the resulting multivariable models. In this case, we did not compute
a final model, because our goal was only to compare the performance across the models.

The entire multivariable modeling process was conducted for every feature extraction set-
ting individually, as well as for the case of all features from all extraction settings combined
into one large set. For each feature set, the process was repeated for each CCC threshold in
the set CCCt ∈ {0, 0.8, 0.85, 0.9, 0.95}. Finally, for each feature set, and each CCC thresh-
old, the process was repeated for every feature count in the set {1, 2, 4, 8, 16, 32, 64}. This
resulted in a total of 9 feature sets × 5 CCC thresholds × 7 feature counts = 315 different
multivariable model cross-validation experiments.

2.6 Statistical Analysis

2.6.1 Hierarchical Clustering

To find patterns in the reproducibility and univariate predictive value of features, we used
a hierarchical clustering and dendrogram visualization (Müllner, 2011; Bar-Joseph et al.,
2001). For the reproducibility analysis, the rows of the matrix corresponded to the features,
while the columns corresponded to each combination of ROI and feature extractor, and the
values were the CCC. By including both ROIs in the analysis, we were able to see clusters of
patterns across and between ROIs. For the univariate survival analysis, a similar clustering
approach was used, although the two ROIs were split, because the same feature in either
ROI may have a different biological relevance to survival. Therefore, in the univariate
survival case, the rows corresponded to each feature, while the columns corresponded to
the feature extractors, and the analysis was repeated for both ROIs. In all cases, the
hierarchical clustering was done for both the rows and columns, using Ward linkage (Ward,
1963).

3. We used a weak threshold for significance, because this is simply a filtering step.
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2.6.2 Pareto Efficiency and Pareto Front

In multi-objective optimization, a potential solution A Pareto dominates solution B if for
every objective, A is better than B, or equally good. A solution A is Pareto efficient if
there exists no other solution that Pareto dominates it. The Pareto front refers to the set of
all Pareto efficient solutions. In other words, the Pareto front is the set of all solutions for
which no improvement on any objective is possible, without a deterioriation of some other
objective. In order to better understand the relationship between the reproducibility and
prognostic value of the features, we considered the set of features that are Pareto efficient
over both the CCC and univariate C-index when features were grouped across all extractors.
To understand the relationships between extractors, we also computed a Pareto front across
feature extractors for each individual feature.

3. Results

L2i S2i A2 L2 S2 A3 L3 S3
vs. 1.8e-07 2.0e-05 6.4e-04 1.2e-04 2.4e-10 4.9e-07 1.3e-06 2.6e-13
vs. 2.3e-32 2.3e-32 3.8e-30 6.8e-32 2.2e-32 1.2e-30 8.3e-32 2.3e-32
vs. 1.4e-32 1.4e-32 5.0e-32 3.2e-32 2.1e-32 2.5e-31 3.0e-32 2.1e-32
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Figure 3: Box plots of the features compared pairwise across slice thicknesses, broken down
by feature extraction setting. The statistical significance of the change in CCC
value between different pairs of slice thicknesses is listed below the plot, based on
the results of a Wilcoxon sign-rank test.

The results of the first phase of the reproducibility analysis are summarized in Figure 3.
Here, the distribution of CCCs across all feature values for each extractor is compared across
each pair of slice thicknesses. Intuitively, the largest difference in slice thickness (2.5 mm
vs. 5 mm) shows a significantly lower distribution of CCCs than the other two pairs, which
compare slice thicknesses which are closer together (2.5 mm vs. 3.75 mm, and 3.75 mm vs
5 mm). These differences were highly statistically significant based on a Wilcoxon sign-rank
test between all CCC pairs (p < 3.8×10−30 in the bottom two rows of the table in Figure 3).
Interestingly, the 3.75 mm vs. 5 mm pairs also seem to have slightly higher CCC than the
2.5 mm vs. 3.75 mm pairs, at a lower level of significance (p < 6.4× 10−4 in the top row of
the table in Figure 3).
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Figure 4: Cluster maps of the CCC (A) and C-index (B) of all features. Each row corre-
sponds to a unique feature, while each column is an extractor setting. For the
CCCs, the liver and tumor extractor results are joined, and clustered together,
to emphasize the patterns of reproducibility across ROIs and extractor. For the
C-index, the liver and tumor results are clustered separately. The feature class
for each row is indicated by the left-most column of each heat map.

We now turn to the second phase of the reproducibility analysis, based on the generalized
CCCs computed across all slice thicknesses using the LMM model. Figure 4 (A) summarizes
the results across all features, extraction settings, and ROIs. The results are visualized as a
heat map, where each row is a feature, and each column corresponds to a combination of ROI
and extractor setting, and the values are CCCs. Both the rows, and columns underwent
hierarchical clustering based on Euclidean distance and Ward linkage. We can see, near
the top of the map, a cluster of features that are highly reproducible across all extraction
settings. As can be seen in the left-most column of the map, these highly reproducible
features all belong to the first-order feature class. With some exceptions, within both
ROIs, the CCCs across extractors tend to follow similar patterns; however, overall, the
liver features visually appear to tend toward lower CCCs. This tendency is confirmed
by a Wilcoxon sign-rank test, which shows that feature CCCs between the two ROIs are
statistically significantly lower in the liver parenchyma, with p ∈ [8.8 × 10−11, 3.6 × 10−5]
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Figure 5: (A)–(C): Bar plots counting for how many features each extractor produces the
highest CCC (A), highest C-index (B), or a pair of CCC and C-index that is
Pareto efficient for that feature (C). (D): A bar plot of how many features from
each extractor are on the Pareto front for all features across all extractors. In
(A)-(D), the line indicators show the number of features broken down by ROI
(tumor or liver for left and right, respectively), while the bar height corresponds
to the average across the two ROIs. (E): A scatter plot of the C-index and CCC
for all features, color coded by ROI, with points on the Pareto front rendered
with full opacity and circled in red.

across all extractors. Interestingly, the CCCs between ROIs and extractor settings are
sufficiently different that they cluster logically: the two ROIs form two higher level clusters;
and within each ROI, L2i and S2i form their own cluster, and within the other cluster, the
2.5D and 3D settings cluster together.

Figure 4 (B) and (C) show similar cluster maps of the univariate C-indexes, computed
against overall survival in the publicly available cohort, for each feature, from the tumor
and liver ROIs, respectively. The ROIs were clustered separately because the ROIs are
biologically different, and therefore the discriminative ability of a given feature may be
completely different in a different ROI. Both maps cluster features into three broad groups—
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Table 4: The performance of the top 10 parameter combinations in terms of test-set C-
index and 95% confidence interval, in the multivariable CPH experiments. The
average proportion of features drawn from the liver across all runs is listed in the
final column.

Extractor Feature Count CCCt Harrel’s C-index Prop. Liver Features

L2i 4 0.00 0.630 (0.603–0.649) 0.52
all 4 0.85 0.629 (0.605–0.645) 0.53
L2i 8 0.00 0.627 (0.607–0.648) 0.57
all 8 0.80 0.626 (0.606–0.645) 0.55
L2i 4 0.90 0.625 (0.603–0.643) 0.28
all 4 0.80 0.624 (0.600–0.645) 0.53
L2i 8 0.90 0.624 (0.602–0.645) 0.24
all 8 0.85 0.622 (0.605–0.644) 0.56
all 8 0.00 0.622 (0.599–0.643) 0.50
S2i 8 0.00 0.620 (0.592–0.645) 0.61

a low C-index group at the top, a high C-index group in the middle, and a middle group
at the bottom. Both the high C-index and low C-index groups are larger in the tumor
ROI than in the liver parenchyma. Broadly speaking, the features tend to show similar
trends in terms of predictive value across the extractor settings. On the other hand, there
are some exceptions: at the bottom of the tumor cluster map (B), there is a cluster of
features where the L2i and S2i features tend to be less predictive than the others. Similarly,
in the high C-index cluster of the liver ROI, L2i and S2i again tend to be less predictive.
The column clusters in both maps reproduce the finding for CCC in Figure 4 (A): three
high-level clusters corresponding to (L2i and S2i), (A2, L2, and S2), and (A3, L3, and S3).

To examine the relationship between feature reproducibility and discriminative ability,
we considered the relationships between the CCC and C-index for each feature. For every
feature, we checked which extractors produced the highest CCC, the highest C-index, and
which extractors were Pareto efficient for both CCC and C-index in that feature. The
results are summarized in Figure 5 (A)–(C). Comparing Figure 5 (A) and (B), we see that
the results are inconsistent—there is no set of extractors that produce both the highest
CCC and the highest C-index. With the exceptions of A2 and A3, Figure 5 (C) shows
that all feature extraction settings are well-represented on the Pareto fronts across features.
Finally, grouping all features from all extractors together, and computing the set of Pareto
efficient features for CCC and C-index shows that all extractors except A2 contribute (see
Figure 5 (D)), with S3 contributing the greatest number of features (6). A scatter plot of
all features is shown, color coded by extractor setting, with the Pareto front highlighted,
in Figure 5 (E). Finally, the set of all 23 Pareto efficient features is listed in Table 5 in the
appendix. It is worth noting that several features that are listed are actually equal, and
therefore over-counted in Figure 5 (D). Furthermore, note that first-order features across S2
and S3, or L2 and L3 are also equal, and therefore some features that appear in both sets
are still identical. These groups of equal features are marked in Table 5. Figure 5 (A)–(D)
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Figure 6: The cross-validation performance of the 4-feature models across extractor settings
is plotted for CCCt = 0 (blue) and CCCt = 0.85 (orange). The test set results
are summarized in box plots, while the average performance on the train set
across folds is summarized by lines. The train set error bars correspond to 90%
confidence intervals for the performance across repeated cross-validations.

also indicates that the optimal feature extraction method for a given criterion (C-index,
CCC, or Pareto front) appears to vary not only across specific features, but across ROIs.
Indeed, most of the extractors, and both ROIs are represented, at least to some extent, on
the overall Pareto front across all features and extractors (see Figure 5 (D)).

The multivariable CPH cross-validation experiments produced results for 315 combina-
tions of three parameters (feature extraction setting (8 extractors plus 1 for all), feature
count (1, 2, 4, 8, 16, 32, 64), CCC threshold (0, 0.8, 0.85, 0.9, 0.95)). The test-set C-index
and 95% confidence intervals across all 100 repetitions are listed for the ten highest per-
forming parameter combinations in Table 4. Models based on the features from extractor
L2i attained the highest C-index of 0.630 (0.603–0.649), with 4 features being selected,
and no CCC thresholding. The second highest performance of 0.629 (0.605–0.645) was at-
tained using features from all extractors, with 4 features being selected, and a threshold
of CCC ≥ 0.85. Based on these top two performing cases, the performance of the models
using 4 features, across all extractors, and CCCt = 0 and CCCt = 0.85 are visualized in
Figure 6. For most extractors, the thresholding of features to those with CCC over 0.85
appears to have little effect on the performance of the resulting models. In a few cases, L2i,
A2, and A3, the performance is reduced after thresholding. When including features from
all extractors (left-most in the figure), the performance increases after CCC thresholding.
The performance on the training set tends to be lower after thresholding, suggesting that
the models using reproducible features may be less prone to overfitting.

To visualize the sensitivity of these results with respect to the CCC threshold and the
number of features selected, we have visualized the results from all parameter settings in
Figure 7. Each plot shows the C-index for both the training and test sets, plotted against the
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Figure 7: The C-index for the train set (blue) and test set (orange) is plotted against feature
count, for every extractor setting (rows) and every CCC threshold (columns). The
90% confidence interval for the number of available features after CCC thresh-
olding and univariate filtering is indicated by the gray regions.

number of features selected in the model. In some cases, after thresholding, and applying
the univariate feature filter (removing features with C-index below 0.55 or with p-value
over 0.1), there may have been fewer than the desired number of features remaining for
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Figure 8: Features with high/low CCC (top/bottom) and high/low C-index (left/right)
are visualized. For each, an example tumor with a high value for the selected
feature, and a low value are illustrated in the two rows. The columns display the
same tumor for an example patient from the reproducibility data set (first three
columns, corresponding to slice thickness 5 mm, 3.75 mm and 2.5 mm), and the
survival data set (fourth column).

feature selection. In these cases, all features passing the threshold and univariate filter
were used. The 95% confidence intervals for the number of available features at the time
of applying mRMR for the different threshold levels is indicated by the gray regions, where
either limit was less than 64. Typically, beyond this point, requesting more features does
not change the performance of either the train or test set, because the number of features
is saturated. This effect is clearly visible in the plots for CCC ≥ 0.9 and CCC ≥ 0.95,
where fewer features tend to remain after thresholding, due to the stringent reproducibility
requirement. Broadly, we observe that the best performance tends to be obtained using
4 or 8 features, insofar as there are sufficiently many features available after thresholding.
Again we can observe that, although the effect appears small, the training set performance is
slightly reduced when the features are thresholded on CCC, indicating a potential reduction
in overfitting. For higher thresholds, this effect is primarily due to the number of features
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being saturated, but for CCC ≥ 0.8 and CCC ≥ 0.85 the number of available features is
high enough to observe the difference even before feature count saturation.

A visualization of tumors with different values for features with high/low C-index (prog-
nostic value), and high/low CCC (reproducibility) is given in Figure 8.

4. Discussion

Although in the present study we have restricted our analysis to the reproducibility of
radiomic features when slice thickness is varied at reconstruction time, the ultimate purpose
of the data collection effort from which this study draws is to look at the effects of contrast
timing and reconstruction parameters using a test-retest paradigm with two portal venous
phase images collected within 15s of each other. As part of a multicenter prospective
study systematically varying contrast timing and reconstruction parameters, this paper
presents early results from a research effort that will be a substantial step forward in the
understanding of the reproducibility of radiomics for contrast-enhanced CT of CRLM.

Our results show that when comparing the 20% ASiR images pairwise at different slice
thicknesses, the CCCs for features from the 5 mm and 2.5 mm images are significantly lower
than when we compare 5 mm and 3.75 mm, or 2.5 and 3.75 mm pairs. The degradation in
consistency of features as the change in slice thickness increases is consistent with findings
in the literature from phantom studies (Zhao et al., 2014; Kim et al., 2019; Ligero et al.,
2021), as well as lung cancer CT (Lu et al., 2016; Park et al., 2019; Erdal et al., 2020). The
consistency of this finding across cancers is noteworthy given that feature reproducibility
is anatomy/disease-specific, even within CT (van Timmeren et al., 2016). We also found,
at a lower level of statistical significance, that the features had higher CCC in the 5 mm
and 3.75 mm pairs, compared to the 2.5 mm and 3.75 mm pairs. We hypothesize that this
result could be due to the lower noise level in thicker sliced images, compared to thinner
slices, or due to resampling issues when upsampling the ROI segmentations to 2.5 mm.

Moving to liver cancer more specifically, Perrin et al. (2018) examined a database of
consecutive patients from MSK diagnosed with liver malignancy, with the additional inclu-
sion requirement that they had two contrast-enhanced abdominal CT scans taken within no
more than 14 days of each other. By including two scans per patient with a small separation
in time, this data set served as an approximation of a test-retest study, allowing the study of
the reproducibility of radiomic features across two consecutive scans. The database included
patients with multiple liver cancers including liver metastases (n=22), intrahepatic cholan-
giocarcinoma (n=10), and hepatocellular carcinoma (n=6). Because image acquisition and
reconstruction parameters naturally varied between the scans for a given patient, this data
set allowed the exploration of the effects of these different parameters on the overall concor-
dance of the radiomic features between the consecutive scans, as measured by CCC. One
parameter that Perrin et al. (2018) reported on was pixel spacing, which is closely related
to slice thickness, given that both variables directly affect the resulting voxel volume of
the 3D image. They found that scan pairs with a greater difference in pixel spacing had
lower feature agreement for features extracted from both tumor and liver parenchyma ROIs,
highlighting along with our own results that the feature reproducibility across variations of
any parameters affecting voxel volume, including slice thickness and field of view, is an im-
portant consideration when drawing inference from radiomic features. For all the variables
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they considered, including pixel spacing, Perrin et al. (2018) also found that the tumor
tended to have a larger number of reproducible features than the liver parenchyma. Simi-
larly, our reproducibility analysis showed that features extracted from the liver parenchyma
were overall less reproducible across slice thickness variation than those drawn from the
largest metastasis, regardless of the extractor setting under consideration.

Despite the lower reproducibility of the features drawn from the liver parenchyma, our
univariate survival analysis showed that the liver features still contained a relevant signal
with regard to overall patient survival in the independent retrospective data set. Indeed, the
highest overall univariate C-index was attained by a feature from the liver parenchyma—
GLDM SmallDependenceLowGrayLevelEmphasis (C-index=0.6176)—and features from the
liver parenchyma were well-represented on the Pareto front for C-index and CCC (see
Table 5). Similarly, in the top-performing multivariable models, across all cross-validation
runs, the average proportion of selected features coming from the liver was usually over
50% (see Table 4). The presence of important information relevant to patient outcomes
in the radiological texture of the liver parenchyma is biologically feasible, and consistent
with previous analyses in the literature (Simpson et al., 2017; Hu et al., 2022b). Given
the apparent importance of the liver parenchyma features, future studies should investigate
methods of tailoring the feature extraction to improve the reproducibility of the features
extracted from the liver parenchyma, without degrading their prognostic value.

The IBSI reference manual (Zwanenburg et al., 2016) recommends resampling to a com-
mon voxel size to ensure the features are comparable between images with different resolu-
tions. However, several empirical studies have shown that resampling has a limited ability
to mitigate the effects of slice thickness, or resolution generally, on radiomic features. Ligero
et al. (2021) showed in a phantom study that resampling could improve feature concordance
across varying slice thickness to a limited extent, but found that harmonization of features
treating slice thickness as a batch effect had a stronger effect. In lung CT, studies have
found limited improvement when resampling images to the same voxel volume with linear
interpolation (Yang et al., 2021), although deep-learning-based super-resolution algorithms
have shown promise (Park et al., 2019). In a study varying pixel spacing by varying field of
view during reconstruction, Mackin et al. (2017) found that resampling on its own actually
worsened reproducibility of features across pixel sizes; however, combining resampling with
a low-pass Butterworth filter improved feature concordance. Shafiq-Ul-Hassan et al. (2017)
found in a phantom study that resampling improved feature concordance across images
acquired with different voxel sizes for only a small subset of features. The majority of these
features could also be corrected without resampling, by including a correction factor based
on the voxel volume and/or ROI volume—a result which they subsequently validated in
a lung cancer cohort (Shafiq-ul Hassan et al., 2018). Using a similar approach to feature
correction, Escudero Sanchez et al. (2021), in a study of contrast enhanced CT imaging of
liver cancer, found that while resampling to the mean spacing in all directions improved the
number of features that were reproducible across changes in slice thickness, after feature
correction, the result was modest in terms of absolute improvement over extracting features
from the original images. In aggregate, these studies show that isotropic resampling is, on
its own, not sufficient to mitigate the effects of slice thickness variation on the resulting
radiomic feature values.
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Our results also indicate limitations of resampling to mitigate voxel resolution effects. In
the present study, we were further motivated to question the use of isotropic resampling—as
recommended by IBSI (Zwanenburg et al., 2016) to preserve rotational invariance of fea-
ture definitions—due to the inherently anisotropic nature of our abdominal images. In our
previous study on this topic (Peoples et al., 2023), we showed that aggregating features
in 2.5D with no z-axis resampling (i.e. L2i and S2i) tended to produce more reproducible
texture features, and still produced good prognostic models. In the present work, we con-
ducted a more in-depth analysis of the relationship between feature extraction method,
reproducibility, and prognostic value. From Figure 4, we can see that no one extraction
method produces more reproducible or more prognostic features in every case. Indeed,
both Figure 4 and Figure 5 illustrate that there is no consistently “best” feature extrac-
tion approach across all features and ROIs, when we consider either C-index or CCC in
isolation, or when we consider both by looking at the Pareto front. Furthermore, while
the best overall performance in the multivariable survival models was obtained by using
features from L2i, the combination of all extractors was able to rival this performance when
we removed features with CCC < 0.85 across slice thicknesses. These results suggest that
when feature reproducibility across important variations in imaging protocol is known a
priori (such as from a test-retest study), including reproducibility into the feature selection
process can improve model performance. In this case, highly reproducible and prognostic
models can be achieved without optimizing the feature extraction process, by including fea-
tures extracted using a variety of settings, and allowing the best features to be selected in
a data-driven manner accounting for both reproducibility and discriminative ability. This
data-driven approach is reminiscent of a method used by Vallières et al. (2017), wherein
features extracted with multiple settings, such as resampling resolutions, were pooled into
a larger table, and allowed to be considered as separate features during model building. In
the absence of reproducibility scores for each feature, choosing settings that can produce
features that are more robust to protocol variations present in the data set may be more
important, but it is unclear how to choose these settings without a reproducibility study,
given the study-specific nature of feature CCCs (van Timmeren et al., 2016).

One limitation of this study is the use of only one fixed bin count of 24 when computing
the texture features. The bin count is a key parameter for computing texture features, and
has a large effect on the results; though, for many features this effect is at least somewhat
predictable (Shafiq-Ul-Hassan et al., 2017; Shafiq-ul Hassan et al., 2018). Furthermore,
phantom studies have suggested that variation of the discretization, although it affects
the feature values, does not have a large effect on feature reproducibility (Larue et al.,
2017). Due to the large number of modeling experiments, and already large number of
dimensions under consideration in the present study, we chose to avoid adding bin count as
an additional variable at this time. In a study of contrast enhanced CT of hepatocellular
carcinoma, Escudero Sanchez et al. (2021) found that the optimal bin count for feature
reproducibility across slice thicknesses was in the range of (32–64), which given the step-
size in their analysis, is nearly encompassing our chosen value of 24. Depite this, future
work should consider the effect of bin count on feature reproducibility and prognostic value.

In conclusion, our results demonstrate the strong effect of slice thickness on feature
reproducibility for contrast enhanced CT imaging of CRLM. Although some methods of
feature extraction may mitigate the effects of slice thickness on some features, overall, we
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found that the extractor producing the most reproducible value for a given feature can vary
across features and ROIs. Similarly, the greatest discriminative ability for a given feature
may be attained by different extractors, dependent on feature, and ROI. Given this, our
results support a data-driven approach, where features from a variety of extractor settings
are all considered, and selected in a manner accounting for reproducibility across relevant
variations in protocol. Where disease-specific reproducibility metrics are not available, some
methods of feature extraction may perform better due to improvements in reproducibility
across certain prognostic features (such as the L2i features in the present study), however
it is unclear how to determine this without a reproducibility study. Overall, our results
demonstrate that we can find radiomic features that are both reproducible across slice
thickness variation, and prognostic in patients undergoing hepatic resection, in the context
of contrast enhanced CT of colorectal liver metastases.

Acknowledgments

This work was supported by National Institutes of Health grant R01 CA233888.

Ethical Standards

The work follows appropriate ethical standards in conducting research and writing the
manuscript, following all applicable laws and regulations regarding treatment of animals
or human subjects. The study was conducted in accordance with the principles described
in the declaration of Helsinki, with approval of our local IRB and informed consent of all
patients.

Conflicts of Interest

We declare that we have no conflicts of interest.

Data availability

The retrospective data set used for survival analysis is publicly available from TCIA (Simp-
son et al., 2023). The prospective data set used for the reproducibility analysis is still
being actively collected and prepared, and is therefore not available, though our intent is
ultimately to release it on TCIA.

References

Ziv Bar-Joseph, David K Gifford, and Tommi S Jaakkola. Fast optimal leaf ordering for
hierarchical clustering. Bioinformatics, 17(suppl 1):S22–S29, June 2001.
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Zhang, André Dekker, and Philippe Lambin. Test-retest data for radiomics feature sta-
bility analysis: Generalizable or study-specific? Tomography, 2(4):361–365, December
2016.

Bino A Varghese, Darryl Hwang, Steven Y Cen, Joshua Levy, Derek Liu, Christopher
Lau, Marielena Rivas, Bhushan Desai, David J Goodenough, and Vinay A Duddalwar.
Reliability of CT-based texture features: Phantom study. J. Appl. Clin. Med. Phys., 20
(8):155–163, August 2019.

Joe H Ward. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc.,
58(301):236–244, March 1963.

Frank Wilcoxon. Individual comparisons by ranking methods. Biom. Bull., 1(6):80, De-
cember 1945.

Yan Xu, Lin Lu, Shawn H Sun, Lin-Ning E, Wei Lian, Hao Yang, Lawrence H Schwartz,
Zheng-Han Yang, and Binsheng Zhao. Effect of CT image acquisition parameters on
diagnostic performance of radiomics in predicting malignancy of pulmonary nodules of
different sizes. Eur. Radiol., 32(3):1517–1527, March 2022.

Shouxin Yang, Ning Wu, Li Zhang, and Meng Li. Evaluation of the linear interpolation
method in correcting the influence of slice thicknesses on radiomic feature values in solid
pulmonary nodules: a prospective patient study. Ann. Transl. Med., 9(4):279, February
2021.

Binsheng Zhao. Understanding sources of variation to improve the reproducibility of ra-
diomics. Front. Oncol., 11, 2021.

Binsheng Zhao, Yongqiang Tan, Wei Yann Tsai, Lawrence H Schwartz, and Lin Lu. Explor-
ing variability in CT characterization of tumors: A preliminary phantom study. Transl.
Oncol., 7(1):88–93, February 2014.

Binsheng Zhao, Yongqiang Tan, Wei-Yann Tsai, Jing Qi, Chuanmiao Xie, Lin Lu, and
Lawrence H Schwartz. Reproducibility of radiomics for deciphering tumor phenotype
with imaging. Scientific Reports, 6(1), 2016.

Alex Zwanenburg, Stefan Leger, Martin Vallières, and Steffen Löck. Image biomarker stan-
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Appendix A. Additional Results

Table 5 lists all features on the Pareto front for CCC and C-index when combining all
feature extractor settings and ROIs.

Table 5: Features on the Pareto front for CCC and C-index when combining all feature
extractor settings and ROIs.

Extractor ROI Class Name CCC C-index

L2i Tumor GLSZM ZoneEntropy 0.9169 0.6114
Liver First order 10Percentile 0.9885 0.5857
Liver First order Mean 0.9998 0.5650

S2i Tumor GLSZM ZoneEntropy 0.9248 0.6075
L2 Tumor First order Energy 0.9974 0.5800

Tumor First order TotalEnergy 0.9974 0.5800
Tumor GLRLM GrayLevelNonUniformity 0.9986 0.5723

S2 Tumor First order Energy 0.9976 0.5785
Tumor First order TotalEnergy 0.9976 0.5785
Tumor GLDM SmallDependenceHighGrayLevelEmphasis 0.9439 0.5869
Liver First order 10Percentile 0.9904 0.5842
Liver First order Mean 0.9997 0.5651

A3 Tumor GLDM DependenceEntropy 0.8120 0.6157
Tumor GLRLM GrayLevelNonUniformity 0.9985 0.5724

L3 Tumor First order Energy 0.9974 0.5800
Tumor First order TotalEnergy 0.9974 0.5800
Liver GLRLM ShortRunLowGrayLevelEmphasis 0.8450 0.6138

S3 Tumor First order Energy 0.9976 0.5785
Tumor First order TotalEnergy 0.9976 0.5785
Liver First order 10Percentile 0.9904 0.5842
Liver First order Mean 0.9997 0.5651
Liver GLDM SmallDependenceLowGrayLevelEmphasis 0.7696 0.6176
Liver GLRLM ShortRunLowGrayLevelEmphasis 0.8773 0.6122

Table 6 lists all features used in this study.

Table 6: All features from all feature classes. Detailed fea-
ture definitions can be found in the pyradiomics documenta-
tion. https://pyradiomics.readthedocs.io/en/latest/

features.html

Feature Class Name

First order 10Percentile

Continued on next page
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Table 6: All features from all feature classes.

Feature Class Name

90Percentile
Energy
Entropy
InterquartileRange
Kurtosis
Maximum
Mean
MeanAbsoluteDeviation
Median
Minimum
Range
RobustMeanAbsoluteDeviation
RootMeanSquared
Skewness
TotalEnergy
Uniformity
Variance

GLCM Autocorrelation
ClusterProminence
ClusterShade
ClusterTendency
Contrast
Correlation
DifferenceAverage
DifferenceEntropy
DifferenceVariance
Id
Idm
Idmn
Idn
Imc1
Imc2
InverseVariance
JointAverage
JointEnergy
JointEntropy
MCC
MaximumProbability
SumAverage
SumEntropy

Continued on next page
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Table 6: All features from all feature classes.

Feature Class Name

SumSquares
GLDM DependenceEntropy

DependenceNonUniformity
DependenceNonUniformityNormalized
DependenceVariance
GrayLevelNonUniformity
GrayLevelVariance
HighGrayLevelEmphasis
LargeDependenceEmphasis
LargeDependenceHighGrayLevelEmphasis
LargeDependenceLowGrayLevelEmphasis
LowGrayLevelEmphasis
SmallDependenceEmphasis
SmallDependenceHighGrayLevelEmphasis
SmallDependenceLowGrayLevelEmphasis

GLRLM GrayLevelNonUniformity
GrayLevelNonUniformityNormalized
GrayLevelVariance
HighGrayLevelRunEmphasis
LongRunEmphasis
LongRunHighGrayLevelEmphasis
LongRunLowGrayLevelEmphasis
LowGrayLevelRunEmphasis
RunEntropy
RunLengthNonUniformity
RunLengthNonUniformityNormalized
RunPercentage
RunVariance
ShortRunEmphasis
ShortRunHighGrayLevelEmphasis
ShortRunLowGrayLevelEmphasis

GLSZM GrayLevelNonUniformity
GrayLevelNonUniformityNormalized
GrayLevelVariance
HighGrayLevelZoneEmphasis
LargeAreaEmphasis
LargeAreaHighGrayLevelEmphasis
LargeAreaLowGrayLevelEmphasis
LowGrayLevelZoneEmphasis
SizeZoneNonUniformity

Continued on next page
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Table 6: All features from all feature classes.

Feature Class Name

SizeZoneNonUniformityNormalized
SmallAreaEmphasis
SmallAreaHighGrayLevelEmphasis
SmallAreaLowGrayLevelEmphasis
ZoneEntropy
ZonePercentage
ZoneVariance

NGTDM Busyness
Coarseness
Complexity
Contrast
Strength
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