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Abstract
Accurate assessment of lymph node size in 3D CT scans is crucial for cancer staging, therapeutic management, and
monitoring treatment response. Existing state-of-the-art segmentation frameworks in medical imaging often rely on
fully annotated datasets. However, for lymph node segmentation, these datasets are typically small due to the extensive
time and expertise required to annotate the numerous lymph nodes in 3D CT scans. Weakly-supervised learning, which
leverages incomplete or noisy annotations, has recently gained interest in the medical imaging community as a potential
solution. Despite the variety of weakly-supervised techniques proposed, most have been validated only on private
datasets or small publicly available datasets. To address this limitation, the Mediastinal Lymph Node Quantification
(LNQ) challenge was organized in conjunction with the 26th International Conference on Medical Image Computing
and Computer Assisted Intervention (MICCAI 2023). This challenge aimed to advance weakly-supervised segmentation
methods by providing a new, partially annotated dataset and a robust evaluation framework. A total of 16 teams from 5
countries submitted predictions to the validation leaderboard, and 6 teams from 3 countries participated in the evaluation
phase. The results highlighted both the potential and the current limitations of weakly-supervised approaches. On one
hand, weakly-supervised approaches obtained relatively good performance with a median Dice score of 61.0%. On the
other hand, top-ranked teams, with a median Dice score exceeding 70%, boosted their performance by leveraging smaller
but fully annotated datasets to combine weak supervision and full supervision. This highlights both the promise of
weakly-supervised methods and the ongoing need for high-quality, fully annotated data to achieve higher segmentation
performance.
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1. Introduction

M achine learning has recently achieved outstand-
ing medical image segmentation performance.
While initial frameworks were tailored to specific

segmentation tasks, significant progress has been made
in developing network architectures and training proce-
dures that are robust and applicable across segmentation
tasks (Isensee et al., 2021; Cardoso et al., 2022). These ro-
bust frameworks generally rely on the availability of large,
fully annotated datasets during training. This reliance,
however, is often impratical. Manual medical data seg-
mentation is a labor-intensive and time-consuming process
that demands rare expertise, leading to small, fully anno-
tated datasets. Moreover, obtaining complete annotations
in an image is sometimes unfeasible due to factors such as
the disproportionate size of the targeted object of interest
compared to the image (e.g., cells in histopathology im-
ages), data ambiguity (e.g., tumor in ultrasound imaging),
or the presence of a very large number of objects to be
segmented (e.g., lymph nodes in 3D scans).

In response to these challenges, weakly-supervised
learning methods have emerged as promising alternatives.
These approaches leverage sparse, noisy, or incomplete an-
notations to train machine learning models, significantly
reducing the need for complete annotations at training
time. In the context of medical imaging, weakly-supervised
learning can utilize various forms of weak supervision,
such as image-level labels (Ouyang et al., 2019), bound-
ing boxes (Kervadec et al., 2020), scribbles (Zhang and
Zhuang, 2022; Dorent et al., 2020), points (Roth, Holger
and Zhang, Ling and Yang, Dong and Milletari, Fausto
and Xu, Ziyue and Wang, Xiaosong and Xu, Daguang,
2019; Dorent et al., 2021b; Can et al., 2018), linear mea-
surements (Cai et al., 2018; Li and Xia, 2020) or partial
annotations (Mehrtash et al., 2024; Dorent et al., 2021a),
to achieve competitive performance in segmentation tasks.

To benchmark new and existing weakly-supervised
techniques for medical image segmentation, we organized
the Mediastinal Lymph Node Quantification (LNQ) chal-
lenge in conjunction with the 26th International Conference
on Medical Image Computing and Computer Assisted In-
tervention (MICCAI 2023). The challenge’s goal was to
segment and identify mediastinal lymph nodes in contrast-
enhanced computed tomography (CT) scans using a new
large and partially annotated dataset. Note that partic-
ipants were allowed to exploit existing smaller, publicly
available, and fully annotated datasets.

Accurate lymph node size estimation is critical for stag-
ing cancer patients, initial therapeutic management, and,
in longitudinal scans, assessing response to therapy. Cur-
rent standard practice for quantifying lymph node size is
based on various criteria that use unidirectional or bidirec-

tional measurements on just one or a few nodes, typically
on just one axial slice. These evaluations are performed
on routine CT scans. However, humans have hundreds of
lymph nodes, any number of which may be enlarged to
various degrees due to disease or immune response. While
a normal lymph node may be approximately 5 mm in diam-
eter, a diseased one may be several cm in diameter. The
mediastinum, the anatomical area between the lungs and
around the heart, may contain ten or more lymph nodes,
often with three or more enlarged greater than 1 cm in
afflicted patients. Accurate volumetric assessment would
thus provide information to evaluate lymph node disease
and provide better sensitivity to detect volumetric changes
indicating response to therapy.

While automated full 3D segmentation of all abnormal
lymph nodes could improve cancer treatment, only small,
fully annotated datasets are currently publicly available to
train machine learning frameworks. For these reasons, we
proposed a weakly-supervised benchmark that aims to au-
tomatically perform lymph node segmentation in 3D CT
scans using partial annotations. Specifically, we partially
annotated (a few nodes only) a large number of scans and
evaluated the performance of the participants’ methods us-
ing a large, fully annotated dataset.

This paper summarizes the LNQ 2023 challenge and is
structured as follows. First, a review of existing datasets
used to perform lymph node quantification is presented in
Section 2. Then, the design of the LNQ challenge is given
in Section 3. Section 4 presents the evaluation strategy of
the challenge (metrics and ranking scheme). Participating
methods are then described and compared in Section 5.
Finally, Section 6 presents the results of the participating
teams, and Section 7 provides a discussion and concludes
the paper.

2. Related Works

We performed a literature review to survey the datasets
used to assess lymph node quantification. Many lymph
node quantification techniques have been explored and val-
idated on private datasets, for example, Tan et al. (2018);
Barbu et al. (2012); Stapleford et al. (2010); Feulner et al.
(2013). Since these datasets are private and working im-
plementations of the methods are not available, it is impos-
sible to benchmark existing and new methods with these
techniques.

Other authors have used public datasets to validate
their methods. We present these open datasets and high-
light their limitations for evaluating lymph node quantifi-
cation:
• CT Lymph Node dataset: The NIH CT Lymph Node

dataset (Roth et al., 2015) comprises a total of 176
contrast-enhanced CT series from 176 patients. Among
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 3D CT + partial segmentation (N=383) 

Training

Lymph Node segmentation:
                Partial
                Missing part

 3D CT + private full segmentation (N=20) 

Validation

Lymph Node segmentation:
                Private
               

 3D CT + private full segmentation (N=100) 

Testing

Lymph Node segmentation:
                Private
               

Figure 1: Overview of the challenge dataset. Only partial annotations (green) were made available for the training 3D
CT scans. Missing training data nodes are shown in red. Full segmentations (blue) of all nodes were performed for
evaluation on the validation and testing sets, and remained private.

them, 89 CT volumes were obtained at the chest level
(mediastinum). Partial node segmentation is provided,
corresponding to 387 nodes with a short axis diameter
(SAD) ≥ 1 cm, which is considered clinically enlarged
and abnormal. Bouget et al. (2023) extended and refined
these annotations for all the mediastinal lymph nodes in
these 89 volumes. All suspicious regions are segmented
as lymph nodes, including nodes with short-axis mea-
surement less than 1 cm. In total, 2912 nodes were
segmented.

• St. Olavs Hospital dataset: This dataset (Bouget et al.,
2019) comprises 15 contrast-enhanced CT volumes from
15 patients with confirmed lung cancer diagnoses. Seg-
mentation of all the lymph nodes is provided. A total of
384 lymph nodes were annotated in this dataset.

Moreover, other datasets that comprise contrast-
enhanced CT scans have been released from patients
with lung cancer, such as NSCLC-Radiomics (Aerts et al.,
2014), NSCLC Radiogenomics (Bakr et al., 2018), NSCLC-
Radiomics Interobserver1 (Wee et al., 2019), RIDER Lung
CT (Zhao et al., 2009). However, these datasets do not
provide any segmentations of lymph nodes.

In conclusion, test sets used to assess segmentation
methods for mediastinal lymph node segmentation are ei-
ther private, relatively small, or partially annotated.

On the methodological side, a wide range of weakly-
supervised methods have been proposed. Nonetheless, a
thorough review of weakly-supervised methodologies is out
of the scope of this paper, except to note that it it an active
area of research with many unsolved challenges. We refer
the interested reader to Zhang et al. (2020) for a review of
these.

3. Challenge description

3.1 Overview

The goal of the LNQ challenge was to benchmark new
and existing weakly-supervised techniques for lymph node
quantification. The proposed segmentation task focused
on segmenting all the lymph nodes in contrast-enhanced
computed tomography (CT) scans. Participants had ac-
cess to a training set of partially annotated CT scans. Par-
ticipant’s algorithms were evaluated on a fully annotated
dataset.

3.2 Data description

3.2.1 Data overview

The challenge cohort is a cross-institutional dataset of 513
chest CT scans acquired during patient treatment for var-
ious cancer types. The dataset originates from the Tumor
Imaging Metrics Core (TIMC), a multi-institutional imag-
ing core lab (Massachusetts General Hospital, Dana-Farber
Cancer Institute, Brigham and Women’s Hospital, Boston,
MA, USA) that provides multimodality imaging measure-
ments to evaluate treatment response in patients enrolled
in oncology clinical trials. This dataset was used for train-
ing, validation, and testing. Figure 1 presents an overview
of the challenge dataset.

The complete LNQ dataset (training, validation, and
testing) contained CT images collected on 513 patients
(Male:Female 239:274) enrolled in oncology clinical trials
from 2007-2020. For each patient, contrast-enhanced CT
scans were acquired. The Institutional Review Board at
the Mass General Brigham (MGB IRB) approved the pro-
tocol (2020P000211), including public sharing of the data
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Table 1: Summary of characteristics of the LNQ data sets. Median [Q1-Q3] are given for numerical values.

Training Validation Test
Modality contrast-enhanced CT contrast-enhanced CT contrast-enhanced CT
Number of scans 383 20 100
Number of patients 383 20 100

Breast (18%) Breast (25%) Breast (4%)
Chronic lymphocytic leukemia (15%) Chronic lymphocytic leukemia (30%) Chronic lymphocytic leukemia (11%)

Hodgkin lymphoma (7%) Hodgkin lymphoma (5%) Hodgkin lymphoma (8%)
Lung non-small cell (9%) Lung non-small cell (25%) Lung non-small cell (16%)

Lung small cell (6%) Lung small cell (5%) Lung small cell (7%)
Renal cell (5%) Renal cell (0%) Renal cell (7%)

Cancer type

Others (40%) Others (10%) Others (47%)
Public annotations Some lymph nodes × ×
Private annotations × All lymph nodes All lymph nodes
In-plane matrix 512 (100%) 512 (100%) 512 (100%)
Slice number 114 [96-136] 112 [92-127] 86 [77-93]
In-plane res. in mm 0.8 [0.8-0.9] 0.8 [0.8-0.9] 0.9 [0.8-0.9]
Slice spacing in mm 3.0 [2.5-3.8] 3.0 [2.5-3.8] 3.8 [3.8 - 5.0]
Male:Female 47% : 53% 45% : 55% 47% : 53%

(2020P003754).
The dataset comprises patients with various types of

cancer. The top six primary patient cancers, which ac-
counted for 60% of all patients, were breast cancer (N=80),
chronic lymphocytic leukemia (CLL) (N=74), non-small
cell lung cancer (N=58), Hodgkin‘s lymphoma (N=38),
small cell lung cancer (N=30), and renal cell cancer
(N=25). The remaining patient cancer types, accounting
for 40% of all patients, including thyroid cancer, adeno-
carcinoma, endometrial adenocarcinoma, melanoma, head
and neck cancer, non-Hodgkin’s lymphoma, prostate can-
cer, mesothelioma, esophageal cancer, ovarian cancer, and
colon cancer.

The radiology and oncology experts on our team have
determined that for this challenge, the CT appearance of
clinically important lymph nodes is not influenced by the
primary cancer type. Based on this, we have included as
many cases as possible with segmented lymph nodes of any
primary cancer type on the premise that access to more
data that experts judge to be similar in appearance is more
likely to provide a robust segmentation model.

The dataset was randomly split into training (76%),
validation (4%) and test (20%) sets. Table 1 shows the
distribution of features (patient sex, cancer, slice thickness,
and in-plane resolution) across these sets.

3.2.2 Image acquisition

Images from the LNQ challenge were acquired with rou-
tine clinical CT scanners from various manufacturers (e.g.
GE Healthcare Discovery CT750HD, GE Medical Sys-
tem BrightSpeed, Siemens SOMATOM Definition, Toshiba
Aquilion, Philips iCT). The scans are of routine clinical
quality, with 2 to 5mm slice spacing and an in-plane reso-
lution of approximately 1 × 1mm or smaller. Acquisitions

are typically 512x512 axial scans with 100 or more slices
(range: 48-656 slices).

3.2.3 Annotation protocol

All imaging datasets were manually segmented following
two annotation protocols. While the training set was par-
tially annotated, the validation and test sets were fully an-
notated, following the considerations described below.

The training set was annotated based on data from
the clinical trials workflow. This annotation process in-
volves two steps: lymph node selection and manual vol-
umetric segmentation. Since the initial annotations are
created within the context of clinical trials, the cases are
not initially fully annotated; only specific lesions or lymph
nodes are marked. Specifically, expert image analysts used
the Yunu (Cary, NC, previously known as Precision Imaging
Metrics (PIM)) clinical trials imaging informatics software
system to select lesions, focusing on those to be followed
with bi-dimensional measurements in single axial slices of
longitudinal CT scans. Nodes were selected according to
trial protocols defined by the sponsor, which may vary for
different patients. This means the selected lesions may not
always be the largest present in the case (Eisenhauer et al.,
2009). Moreover, protocols may have different selection
criteria or only call for annotations of a maximum number
of lesions per patient. In the second step, the volumetric
extent of these selected nodes was manually segmented to
create the weak annotations for the heterogeneous training
CT data of the challenge.

The validation and test sets were fully segmented to
reflect the full mediastinal lymph node disease burden and
used to assess the performance of the LNQ participants’
methods. All lymph nodes considered abnormal, with an
estimated short axis length larger than 1 cm, were tar-
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geted for segmentation. Surrounding structures excluded
from the lesion boundary included large vessels, artifacts,
and non-nodal components. We acknowledge that visual
assessment of the short axis is error-prone, so this crite-
rion may not always be satisfied for nodes with a short axis
around the threshold.

Volumetric segmentations were performed using 3D
Slicer (Pieper et al., 2004; Fedorov et al., 2012). All lymph
nodes were segmented by a trained radiologist (TI), with
the support of an instructor in radiology (BS), and in con-
sultation with a senior imaging specialist (HJ). For each
patient, the CT scan and the bidimensional measurements
of the target lymph node were loaded into 3D Slicer (ver-
sion 4.11). The Segment Editor module was then used to
manually delineate the lymph node boundary at the native
resolution of the CT scan. The Draw tool within the Editor
module was employed to draw freehand boundaries on ax-
ial cross-sections while referencing the sagittal and coronal
planes.

3.2.4 Data curation

Data were fully de-identified by removing all personal
health information identifiers and creating fresh DICOM
files containing only approved tags and images. The MGB
IRB (2020P000211 and 2020P003754), approved the de-
identification procedure, and all header data was manually
reviewed by MGB staff. Image series were manually re-
viewed for quality and to ensure no issues were caused by
de-identification.

Images and segmentation masks were distributed as
NRRD files (.nrrd). The training and validation datasets
were made publicly available via the challenge page 1. In
contrast, the testing set test set remained private. As we
expect this annotated test dataset to be used for other pur-
poses, the data has been on the Cancer Imaging Archive
(TCIA) (Idris et al., 2024).

3.3 Challenge setup

The validation phase took place on Grand Challenge, a
renowned platform for biomedical challenges, which facili-
tated automated validation leaderboard management. Par-
ticipant submissions were automatically assessed using the
evalutils and MedPy Python packages. Each participant
could make up to three daily submissions on the validation
leaderboard. This phase ran from May 1, 2023, to August
30, 2023.

Following best practice guidelines for organizing chal-
lenges, the test set remained private to help ensure fairness
of the evaluation. Participants were required to container-
ize their algorithms using Docker, in accordance with Grand

1. https://lnq2023.grand-challenge.org/data/

Challenge guidelines, and submit their Docker containers
for evaluation on the test set. Only one submission was per-
mitted for the test set evaluation. Participants were first
encouraged to test their Docker containers on the valida-
tion set without submission limits to ensure the algorithms
were containerized correctly. If the predictions matched
those generated on their machines, participants could sub-
mit their algorithms for test set evaluation.

4. Metrics and evaluation

The choice of metrics to evaluate participants’ algorithms
and the ranking strategy are crucial for accurate interpreta-
tion and reproducibility of results (Maier-Hein et al., 2018).
In this section, we adhere to the BIAS best practice rec-
ommendations for evaluating challenges (Maier-Hein et al.,
2020).

4.1 Choice of the metrics
The primary characteristic to optimize for the algorithms
is prediction accuracy. Since relying on a single metric for
segmentation assessment can result in less robust rank-
ings, we selected two metrics: the Dice similarity coeffi-
cient (DSC) and the Average symmetric surface distance
(ASSD). These metrics are widely used in previous chal-
lenges (Kavur et al., 2021; Antonelli et al., 2022; Dorent
et al., 2023) due to their simplicity, rank stability, and ef-
fectiveness in evaluating segmentation accuracy.

Let S represent the predicted binary segmentation
mask of the lymph nodes, and G represent the manual
segmentation. The Dice Score coefficient measures the
similarity between masks S and G by normalizing the size
of their intersection over the average size of the masks:

DSC(S, G) = 2
∑

i SiGi∑
i Si +

∑
i Gi

(1)

Let BS and BG be the boundaries of the segmentation
mask S and the manual segmentation G. The average
symmetric surface distance (ASSD) is calculated as the
average of all Euclidean distances (in mm) from points on
boundary BS to the boundary BG and vice versa:

ASSD(S, G) =
∑

si∈BS
d(si, BG) +

∑
si∈BG

d(si, BS)
|BS | + |BG|

(2)
where d denotes the Euclidean distance.

4.2 Ranking scheme
We employed a standard ranking scheme, successfully used
in other challenges such as BraTS (Bakas et al., 2018) and
crossMoDA (Dorent et al., 2023). Teams are ranked for
each test case and each metric (DSC and ASSD). In the
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case of ties, the lowest rank is assigned to the tied val-
ues. The overall rank score is calculated by first averaging
individual rankings across all cases (cumulative rank) and
then averaging these cumulative ranks across all patients
for each team. The final team rankings are based on these
rank scores. This ranking scheme was defined and pub-
lished before the challenge began and was available on the
Grand Challenge page2.

To assess the stability of the ranking scheme, we used
the bootstrapping method described by Wiesenfarth et al.
(2021). We generated 1,000 bootstrap samples by ran-
domly drawing 100 test cases with replacements from the
test set, where each sample retained approximately 63%
of distinct cases. The ranking scheme was then applied to
each bootstrap sample. We compared the original test set
ranking to the rankings from individual bootstrap samples
using Kendall’s τ , which ranges from −1 (reverse order) to
1 (identical order).

5. Participating methods

A total of 208 teams registered for the challenge, allowing
them to download the data. 16 teams from 5 different
countries submitted predictions to the validation leader-
board. Among them, 6 teams from 3 countries submitted
their containerized algorithm for the evaluation phase.

In this section, we summarize the methods used by
these 6 teams. Each method is assigned a unique color
code used in the tables and figures. Brief comparisons
of the proposed techniques in terms of methodology and
implementation details are presented in Table 2.

Skeleton Suns (1st place, Deissler et al.) The au-
thors implemented their method using the nnU-Net archi-
tecture (Isensee et al., 2021) with the extension of a resid-
ual encoder (Isensee and Maier-Hein, 2019). The overall
learning strategy involved a multi-step approach to address
the challenges of partially annotated datasets. Initially,
the nnU-Net framework was trained using the LNQ chal-
lenge dataset (Khajavi et al., 2023). Due to incomplete
annotations in the training data, strategic data enhance-
ment was employed, and an additional fully labeled dataset
from TCIA (Roth et al., 2015) with refined segmentations
(Bouget et al., 2023) was incorporated to improve training
efficacy. To handle incomplete annotations, the team used
TotalSegmentator (Wasserthal et al., 2023) to identify and
label non-lymph node structures, effectively refining the
segmentation labels. The remaining unlabeled regions were
excluded from the loss calculation to enable the model to
predict unlabeled lymph nodes within these. Additionally,
the Bodypartregression toolkit (Schuhegger, 2021) focused
the model on the mediastinal region, assigning anatomi-

2. https://lnq2023.grand-challenge.org/

cal scores to each axial slice to exclude non-target areas.
These preprocessing steps ensured the model trained effec-
tively on confirmed labels without mislabeling background
areas as lymph nodes. The network employed was the ’3d
fullres’ configuration of nnU-Net, with adaptations includ-
ing adjustments to batch size, patch size, and an extended
data augmentation strategy. The training involved a 5-
fold cross-validation process, with the final model being
an ensemble of these cross-validated models. The ensem-
ble predictions were averaged during inference, though test
time augmentations were omitted due to time constraints,
slightly degrading performance. Post-processing steps in-
cluded averaging softmax outputs from the ensemble mod-
els to produce the final segmentation masks.

IMR (2nd place, Zhang et al.) The team also pro-
posed a semi- and weakly-supervised learning method for
automatically segmenting clinically relevant lymph nodes in
the mediastinal area of contrast-enhanced CT scans that
utilized both partial annotation and full annotation data for
two-stage training. First, to better capture the anatomic
and semantic representations of mediastinal lymph nodes,
a pre-processing approach guided by lung masks and air-
way maps was used to crop mediastinal VOIs, which in-
cluded four steps: 1) the lung mask was extracted to ob-
tain the initial VOI boundary of the lung (Hofmanninger
et al., 2020); 2) this initial VOI was used to segment the
airway map (Zhang et al., 2023); 3) airway voxels were
removed in the lung mask to extract the secondary VOI
boundary; and 4) the final VOI input was based on the two
VOI bounding boxes with margin settings. Then, a two-
stage pipeline was designed for semantic segmentation that
benefits from partial annotation data. In the first stage,
a full-resolution nnU-Net (Isensee et al., 2021) model was
trained initially from scratch with full annotation data from
the CT Lymph Node dataset (Roth et al., 2015) with re-
fined annotations (Bouget et al., 2023) and the St. Olavs
Hospital dataset (Bouget et al., 2019) based on one-fold
of the 5-fold cross-validation for 1000 epochs. In the sec-
ond stage, the trained model predicted pseudo labels for
LNQ training data, which were combined with their par-
tial annotations to produce new lymph node labels. The
final model was finetuned using jointly full annotation data
and updated partial annotation data for 300 epochs. To
exclude non-diseased lymph nodes, each individual compo-
nent whose volume was less than the volume of a sphere
with a radius of 5 mm was removed in the post-processing
step.

CompAI (3rd place, Fischer et al.) This team em-
ployed a semi- and weakly-supervised approach. The au-
thors proposed incorporating the TotalSegmentator tool-
box (Wasserthal et al., 2023) to generate pseudo labels
and loss masking for handling incomplete annotations in
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Table 2: Comparisons of the proposed techniques in terms of methodology and implementation details.

Skeleton Suns IMR CompAI Hilab IMI SKJP

Network architecture 3D U-Net (nnU-Net) 3D U-Net (nnU-Net) 3D U-Net (nnU-Net) 3D U-Net (nnU-Net) 3D V-Net (nnU-Net) 2.5D U-Net
TCIA CT Lymph Nodes + TCIA CT Lymph Nodes + TCIA CT Lymph Nodes + TCIA CT Lymph Nodes +

Use of external Bouget refinements Bouget refinements Bouget refinements Bouget refinements
datasets St. Olavs Hospital St. Olavs Hospital

NSCLC datasets

× ×

Cropping × Lung and airway Lung Lung Lung ×
Weakly Supervision Background Background Partial-supervised Probabilistic
Approach pseudo-labeling Self-supervision pseudo-labeling loss functions atlas ×

× Small component Small component Small component Small component Largest componentPost-processing removal removal removal removal selection

combination with supervised learning using the nnU-Net
framework (Isensee et al., 2021). Alongside the challenge
training data, the team utilized the fully annotated TCIA
CT Lymph Nodes dataset (Roth et al., 2015), providing
annotations of all pathologic lymph nodes. Instead of
training solely on pathologic lymph nodes, they replaced
original annotations with refined annotations containing
all visible lymph nodes (Bouget et al., 2023). Further-
more, to increase the dataset size, the authors included
the public lung cancer datasets NSCLC radiomics (Aerts
et al., 2014), NSCLC radiogenomics (Bakr et al., 2018),
and NSCLC interobserver (Wee et al., 2019). First, they
created ROIs by cropping each volume to the lung bound-
ing box via the TotalSegmentator. To handle incomplete
annotations, pseudo labels were generated from TotalSeg-
mentator structures. Those structures should, by defini-
tion, not contain any lymph nodes. Labeling those struc-
tures as background increased the training supervision sig-
nificantly. The authors also masked the loss of remaining
unlabeled voxels from the training process. Only one nnU-
Net instance was trained on the preprocessed data with
adjusted hyperparameters for learning rate and intensity
clipping. Furthermore, the authors applied a postprocess-
ing step on the segmentation output by discarding all lymph
node components with a shortest axis diameter less than 10
mm. In their final challenge report (Fischer et al., 2024),
the authors show that this postprocessing hurt the over-
all performance and was based on their misinterpreting the
challenge goal.

Hilab (4th place, Wang et al.) This team pro-
posed a framework that combines the techniques of self-
and weakly-supervised learning. First, they utilized a self-
supervised method named Model Genesis (Zhou et al.,
2021) to initialize the weights of a VNet-like (Milletari
et al., 2016) model with one encoder and two decoders.
Second, they proposed to add perturbation to the input
of one of the decoders to generate variability between the
predictions from each decoder. These two predictions were
then dynamically mixed to produce better pseudo labels.
To better utilize incomplete annotations, Partial Cross-
Entropy (PCE) loss (Lee and Jeong, 2020) and Tversky
loss (Salehi et al., 2017) were applied to this task to bal-

ance the supervisory signals of the foreground and back-
ground. They also used noise-robust Symmetric Cross-
Entropy (SCE) loss (Wang et al., 2019) to further extract
information from incomplete annotations. To prevent the
erroneous foreground voxels in the pseudo labels from mis-
leading the model training, a weighted Cross-Entropy loss
was employed following the approach outlined in Zheng and
Yang (2021). Only the LNQ challenge training data were
used and cropped to the lung region during inference and
training. The model was trained in a patch-based manner
and inferred using a sliding window strategy. Only the pre-
diction from the decoder without perturbation was used as
the inference result. Then, the predicted foreground was
refined based on the actual volume of the connected do-
main, the intensity of the pixel value, and whether it is
at the edge of the image. Finally, the prediction was re-
sampled to its original size. The authors later found in
their challenge report (Wang et al., 2024) that although
the SCE loss and self-learning method improved the per-
formance on the validation set, degradation on the test set
was observed.

IMI(5th place, Engelson et al.) The team proposed
an ensemble of five segmentation models based on full-
resolution nnU-Net trained on multiple anatomical priors
as additional input (Isensee et al., 2021; Engelson et al.,
2024b). To address the challenges arising from the weak
annotations of the training data, a probabilistic lymph node
atlas was registered to the training data to identify re-
gions with high lymph node occurrence, which was then
used for loss weighting and post-processing. Further, the
authors addressed the heterogeneity of the training data
and lymph node appearance by using a strong augmenta-
tion called GIN & IPA introduced by Ouyang et al. (2021).
Preprocessing contained the generation of the anatomical
priors using atlas-to-patient registration based on selected
segmentation masks from the TotalSegmentator algorithm
(Wasserthal et al., 2023), cropping to the lung region, and
normalization. For post-processing, the threshold for bina-
rization was lowered according to the lymph node atlas, and
segmentation masks below a minimum diameter size of 5
mm were removed. The input data consisted of the weakly-
labeled LNQ 2023 training data and publicly available CT
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Lymph Node dataset (Roth et al., 2015) with refined an-
notations Bouget et al. (2023) and the St. Olavs Hospital
dataset (Bouget et al., 2019). The fully annotated data
was oversampled during training. After the publication of
the fully annotated LNQ 2023 validation and test data, the
authors realized that the restriction to a minimum lymph
node size degraded segmentation accuracy and that refin-
ing on the fully annotated datasets improved performance,
as mentioned in their report (Engelson et al., 2024a).

SKJP (6th place, Kondo, et al.) The team used
encoder-decoder type deep neural networks. Although the
input images are 3D volumes, they use a 2D deep neu-
ral network model with multi-slice inputs (2.5D CNNs).
Specifically, they used a 2D U-Net as the segmentation net-
work and replaced its encoder part with EfficientNet (Tan
and Le, 2019). In their model, N consecutive slices in each
input volume were concatenated and treated as an N chan-
nel 2D input image. The input image was then processed to
produce one slice in a segmentation mask volume. The in-
put slices were along the transverse plane. During training,
slices were randomly selected M times from each volume
in the training dataset in each epoch. The loss function
was a sum of Dice loss and cross-entropy loss with equal
weights. The dataset was split into 353 training samples
and 37 validation samples. The optimizer was AdamW
and the learning rate was decreased at every epoch with
cosine annealing. The model was trained for 100 epochs,
and the version with the lowest validation loss was selected
as the final model. Random intensity shifts and random
affine transformations were applied as data augmentation.
Hyperparameter tuning was conducted, including adjust-
ments to the encoder size, number of slices, and initial
learning rate. As a result, EfficientNet-B7 was chosen as
the encoder, with 5 slices and an initial learning rate of
10−3. During inference, each volume was processed slice
by slice, and post-processing involved selecting the largest
connected component.

6. Results

Participants were required to submit their algorithm by
20th September 2023. The final results on the testing set
were announced during the LNQ workshop at the MICCAI
2023 conference. This section presents the results obtained
by the participant teams on the test set and analyses the
stability and robustness of the proposed ranking scheme.

6.1 Overall segmentation performance

The final scores for the 6 teams are reported in Table 3 in
the order in which they ranked. Figures 2a and 2b show
the box plots for each metric (Dice and ASSD) and are
color-coded according to the team.

The winner of the LNQ2023 challenge was the Skeleton
Suns, with a rank score of 2.7. Skeleton Suns is the only
team with a median ASSD lower than 3 mm. Other teams
in the top three also obtained encouraging results with a
median DSC greater than 69%. In contrast, the low DSC
and high ASSD scores of the team with the lowest rank
highlight the complexity of the task.

The top three teams employed a semi- and weakly-
supervised approach, combining full supervision using exist-
ing fully annotated datasets and weak supervision using the
LNQ dataset to train their frameworks. In contrast, meth-
ods that only leverage the LNQ weak labels ( ) under-
performed compared to these semi-supervised approaches.
As shown in Table 3, their medians are significantly lower,
and their interquartile ranges (IQRs) are larger. This high-
lights the effectiveness of leveraging complete annotations
in combination with partial annotations to improve model
performance.

6.2 Analysis of the variations in performance

While the performance achieved by the top-performing
team is high on average, there are patients for whom the
best models do not perform well. In this section, we aim to
analyze the robustness of the proposed models and identify
the more challenging cases.

First, we propose determining whether low-performing
cases are similarly distributed across all teams. Specifi-
cally, we compare the performance of the second and third
teams with that of the top-performing team for each test
case. The Figure 3 shows the relationship between the
Dice scores of the different techniques, with the x-axis
representing the Dice score of the best-performing team
and the y-axis representing the Dice scores of the other
teams. It is clear that in general challenging cases for the
top-performing team are also difficult for the other teams.
Additionally, the first two teams exhibit very similar perfor-
mance for each case, while the third team struggles with
some cases successfully segmented by the other two. This
suggests that some cases were harder to segment.

To determine if certain patient attributes are predic-
tive of segmentation difficulty, we analyzed the distribution
of the best Dice scores across all methods for each case,
considering key patient attributes such as cancer type and
sex. The results are shown in Figure 4. We found that
the best Dice scores had a similar distribution across sexes,
as depicted in Figure 4a. Conversely, Figure 4b shows the
distribution of scores by patient cancer type. It can be
observed that patients with Hodgkin lymphoma had sta-
tistically lower scores compared to those with chronic lym-
phocytic leukemia (CLL) (p = 0.009), renal cell carcinoma
(p = 0.003), breast cancer (p = 0.008), and other types
(p = 0.27). This could be attributed to the fact that
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Table 3: Metrics values and corresponding scores of submission. Median and interquartile values are presented. The
best results are given in bold. Arrows indicate the favorable direction of each metric.

Challenge Rank Lymph Node
Global Rank ↓ Rank Score ↓ DSC (%) ↑ ASSD (mm) ↓

Skeleton Suns 1 2.1 71.2 [63.4 - 78.6] 2.95 [2.13 - 5.05]
IMR 2 2.6 70.0 [63.7 - 77.1] 4.15 [2.92 - 6.3]
CompAI 3 2.9 69.0 [57.1 - 74.8] 5.05 [3.12 - 8.79]
Hilab 4 3.9 61.0 [54.0 - 71.1] 5.92 [3.77 - 8.81]
IMI 5 3.9 61.2 [46.3 - 71.1] 6.0 [3.84 - 9.43]
SKJP 6 5.5 43.3 [22.6 - 56.6] 10.4 [6.56 - 15.39]
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Figure 2: Box plot of the participants’ performance for lymph node segmentation in terms of (a) DSC and (b) ASSD.

lymph nodes associated with Hodgkin lymphoma are typ-
ically bulky and organized in conglomerates, making their
segmentation more challenging.

6.3 Remarks about the ranking stability

Several design factors can influence challenge rankings,
such as the test set used for validation and the aggregation
method applied to these metrics (Maier-Hein et al., 2018).
In this section, we analyze and visualize the stability of
rankings with respect to these factors.

To evaluate ranking stability in the context of sam-
pling variability, we adopted the approach described by
Wiesenfarth et al. (2021) and used for the crossMoDA
challenge (Dorent et al., 2023). Following their guidelines,
we performed bootstrapping with 1,000 samples to exam-
ine the uncertainty and stability of our proposed ranking
scheme. The ranking strategy was applied repeatedly to
each bootstrap sample. Kendall’s τ was used to quantify

the agreement between the original challenge ranking and
the rankings derived from the bootstrap samples, yielding
values between -1 (indicating reverse ranking order) and
1 (indicating identical ranking order). The median [IQR]
Kendall’s τ was 1 [0.87 − 1], indicating excellent stability
of the ranking scheme. Figure 5 presents a blob plot of
the bootstrap rankings, confirming the excellent stability,
with the winning team consistently ranked first across all
bootstrap samples.

We also compared our ranking method with other com-
mon aggregation approaches. The main methods are:

• Aggregate-then-rank: Metric values are first aggregated
(e.g., mean, median) across all test cases for each struc-
ture and metric, then ranks are computed for each team.
Final ranking scores are derived from aggregating these
ranks.

• Rank-then-aggregate: Ranks are computed for each test
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Figure 3: Relationship between the scores for each case
between the first, second and third teams. Challenging
cases are similar for each team.

case, metric, and structure, then aggregated (e.g., mean,
median) to produce a final rank score for each algorithm.

Our method uses a rank-then-aggregate approach with
the mean as the aggregation technique. We compared this
to 1) a rank-then-aggregate approach using the median
and 2) aggregate-then-rank approaches using either the
mean or the median for metric aggregation. Line plots in
Figure 6 illustrate the robustness of rankings across these
methods. The ranks remained consistent across all ranking
variations, with differences only occurring in cases of ties.
Notably, Skeleton Suns was the top-performing team re-
gardless of the ranking approach. This demonstrates that
the challenge rankings are stable and can be interpreted
with confidence.

7. Discussion and conclusion

In this study, we introduced the LNQ challenge in terms of
experimental design, evaluation strategy, proposed meth-
ods, and final results. In this section, we discuss the main
insights and limitations of the challenge.

7.1 Full supervision leads to higher performance
The top-ranked teams all utilized existing fully annotated
datasets to train their frameworks. Notably, the top two
teams first trained their models without the weakly anno-
tated LNQ data, subsequently refining their models using
partial annotations. TotalSegmentator was especially used
to remove false positives. In contrast, methods that solely
leveraged weak annotations underperformed compared to
these fully supervised approaches. This underscores that
full supervision still outperforms existing weakly supervised

approaches, even when using a smaller amount of training
data.

Given that the proposed weakly supervised methods did
not close the gap between full and weak supervision, we
hope this challenge will continue to serve as a benchmark
for developing new weakly supervised approaches.

Additionally, we believe this challenge will contribute
to the improvement of existing models trained using full
supervision, as the validation and testing datasets cur-
rently represent the largest publicly available fully anno-
tated dataset (N=120 scans).

7.2 Limitations
This challenge was designed to benchmark new and exist-
ing weakly-supervised techniques for lymph node segmen-
tation. In this section, we acknowledge some limitations.

First, there was a noticeable shift in the distribution
of cancer types between the training, validation, and test-
ing sets. Despite this gap, similar performance levels were
observed across all cancer types, except for Hodgkin lym-
phoma. Importantly, the proportion of Hodgkin lymphoma
cases was consistent across all three sets, suggesting that
the lower performance for this type was due to the inherent
difficulty in segmenting its bulky and conglomerated lymph
nodes rather than the distribution gap.

The annotation process included selecting lymph nodes
considered abnormal, with a short axis length larger than
1 cm. However, it is believed that some lymph nodes
around this threshold may have been overlooked. More-
over, no post-processing was performed to remove those
with a shorter axis. Some teams attempted to perform
this post-processing, which led to degraded results on the
test set.

In addition, the weakly annotated training dataset was
created by completing volumetric segmentations of lymph
nodes that had been selected for measurement during the
TIMC clinical trial process, meaning that it may be biased
towards the larger or more clinically significant lymph nodes
compared to the nodes included in the fully annotated test
and validation datasets.

Finally, a single-label map was used for all nodes. We
acknowledge that it would have been beneficial to perform
instance segmentation, where each node is individually seg-
mented. This represents a potential area for future work.

7.3 Conclusion
The LNQ challenge was introduced to propose the first
international benchmark for weakly-supervised image seg-
mentation of lymph nodes in 3D CT scans, aimed at ad-
vancing the development of weak-supervised segmentation
methods in the medical imaging community. By curat-
ing a new dataset and providing a standardized evalua-
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Figure 4: Box plot of the best performance per (a) patient sex and (b) primary condition.
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tion, we facilitated the comparison of different approaches
and highlighted the current challenges and limitations of
these weakly supervised techniques. Our findings indi-
cate that fully-supervised methods, even when trained on
smaller amounts of data, continue to outperform weakly-
supervised approaches that leverage larger but partially
annotated datasets. This highlights the ongoing need
for high-quality, fully annotated data to achieve opti-
mal segmentation performance. Nonetheless, the weakly-
supervised methods showed promise, and we believe this
challenge will encourage further innovation in this area.
Overall, the LNQ challenge provides a valuable resource
for the continued development and assessment of lymph
node segmentation methods. The fully annotated valida-
tion and test sets, in particular, will serve as important
assets for future research in lymph node quantification.
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Aslan, Pierre-Henri Conze, Vladimir Groza, Duc Duy
Pham, Soumick Chatterjee, Philipp Ernst, Savaş Özkan,
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