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Abstract
Large Vision-Language Models (LVLMs) have achieved significant success in recent years, and they have been extended
to the medical domain. Although demonstrating satisfactory performance on medical Visual Question Answering (VQA)
tasks, Medical LVLMs (MLVLMs) suffer from the hallucination problem, which makes them fail to diagnose complex
pathologies. Moreover, they readily fail to learn minority pathologies due to imbalanced training data. We propose two
prompting strategies for MLVLMs that reduce hallucination and improve VQA performance. In the first strategy, we
provide a detailed explanation of the queried pathology. In the second strategy, we fine-tune a cheap, weak learner
to achieve high performance on a specific metric, and textually provide its judgment to the MLVLM. Tested on the
MIMIC-CXR-JPG and Chexpert datasets, our methods significantly improve the diagnostic F1 score, with the highest
increase being 0.27. We also demonstrate that our prompting strategies can be extended to general LVLM domains.
Based on POPE metrics, it effectively suppresses the false negative predictions of existing LVLMs and improves Recall
by approximately 0.07.
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1. Introduction

Research on Large Language Models (LLMs) has yielded
astonishing results in recent years. LLMs with billions of
parameters have achieved outstanding abilities in a wide
range of application scenarios (OpenAI, 2022; OpenAI et al.,
2023; Chiang et al., 2023). The success of LLMs has quickly
extended into the Vision-Language (VL) domain. Large
Vision-Language Models (LVLMs) are built upon LLMs by
training adapters that project visual features into tokens
that can be interpreted by LLMs (Li et al., 2023b; Zhang
et al., 2023a; Liu et al., 2023b). Visual Question Answering
(VQA) is an essential skill of LVLMs, and VQA accuracy
serves as a test metric for most of these models (Li et al.,
2023b; Zhang et al., 2023a; Zhu et al., 2023; Liu et al.,
2023b). LVLMs have been pretrained on medical datasets
(Li et al., 2023a; Liu et al., 2023c; Singhal et al., 2023) and
they have been tested on medical VQA tasks (Lau et al.,
2018; He et al., 2020). These Medical LVLMs (MLVLMs)

have been able to answer questions regarding the imaging
modalities, organs, and abnormalities depicted by the input
medical scans.

However, “hallucination” has been a major problem
for LVLMs. This refers to the generation of content that
is contradictory to the input images. Hallucination can
be measured via VQA. One may ask the model questions
regarding the existence of objects in the input image(s)
and the hallucination level is assessed as the percentage
of correctly answered questions. VQA can also potentially
serve for medical image diagnosis. Users pose questions
regarding a pathology and the MLVLM responds based on
its analysis of the medical scans. However, most of the
available datasets involve simple questions such as “what is
the modality of this image” and “what is the organ/tissue in
this image”. MLVLMs have yet to be thoroughly evaluated
on VQA accuracy across a broad spectrum of pathologies.
Additionally, general VQA models are usually tested by
the commonly known accuracy: the percentage of correctly
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answered questions, which is an unsuitable measure for med-
ical VQA. Medical image classification metrics such as the
Precision, Recall, and F1 are more suitable for the evaluation
of medical VQA models. Several strategies have been ex-
plored to enhance the question answering of LLMs/LVLMs,
including chain-of-thought prompting (Zheng et al., 2023),
self-consistency (Wang et al., 2023), and retrieval-based
augmentation (Caffagni et al., 2024). All these methods
involve fine-tuning the models, which is expensive. Training-
free methods to improve the VQA accuracy of MLVLMs
are desirable.

For MLVLMs, hallucination is exacerbated by imbal-
anced training data. Many pathologies are minority cate-
gories in medical datasets. Models trained on large-scale
medical data may easily fail to learn the features of less com-
mon pathologies. Addressing data bias typically involves
strategies such as including more data of better quality, but
given the scarcity of medical data, significantly enlarging
the dataset may not be feasible. Common remediations
involve re-sampling the data such that the positive and neg-
ative cases are better balanced, but this poses challenges
when the data involves multiple categories of pathology.
Additionally, re-sampling may undermine the training needs
of LVLMs, which generally require large quantities of data.
These problems highlight the need of a cost-effective ap-
proach to navigate the problem of minority categories in
datasets.

Our study focuses on the VQA abilities of MLVLMs.
In particular, we test an existing MLVLM, LLaVA-Med (Li
et al., 2023a) for chest X-ray VQA across 5 categories of
pathologies. The results show that the model has low ac-
curacy, especially on minority pathologies. To enhance its
VQA accuracy, we propose two prompting strategies. The
first involves enriching prompts with detailed explanations
of the queried pathology. The explanations include how
the queried pathology is defined and how it appears in im-
ages. Our second strategy involves introducing an auxiliary
weak-learner model as another agent. We train a small
image classifier and fine-tune it to identify negative images
accurately. Then, the negative predictions of this classifier
are appended to the prompt as a reference for the MLVLM.

We run our experiments on the MIMIC-CXR-JPG (Gold-
berger et al., 2000) and Chexpert (Irvin et al., 2019)
datasets. The results show that our prompt strategies
improve the F1 score significantly in most pathology cate-
gories (highest +0.27). We also show that our weak-learner-
prompting strategy is applicable to the general domain. It
reduces the false negative predictions of general domain
LVLMs and improves the Recall by around 0.07 according
to POPE metrics (Li et al., 2023c).

To summarize, our contributions include the following:

1. We improve the VQA accuracy of MLVLMs by prompting

with detailed explanations of pathologies.

2. We introduce a low-cost weak learner model as a reference
for LLaVA-Med, and this effectively reduces the false
positive answers.

3. We show that our second prompting strategy can be
extended to general domains to help models adapt to
specialized accuracy needs.

Section 2 reviews related work, Section 3 describes our
methodology, Section 4 presents our empirical study and its
results, and Section 5 draws conclusions from our research.

2. Related Work

LVLMs and VQA LVLMs are built upon LLMs. A pre-
trained visual encoder extracts the visual features and an
adapter module projects the extracted features to ones that
can be understood by the LLM. Models of this type include
those by Liu et al. (2023b), Zhu et al. (2023), and Zhang
et al. (2023a). During training, the visual encoder and the
LLM are usually fixed. VQA is an essential skill of LVLMs.
Given an input image, the models should be able to answer
questions correctly regarding that image.

Hallucination in LVLM VQA The hallucination problem
usually refers to the LVLM generating a response that is
not consistent with the input image. For VQA, in their
generated answers the models may make mistakes on object
presence, location, attributes, or the mutual relationship
between objects. Li et al. (2023c) find that frequently
occurring objects are easily hallucinated by LVLMs, in that
they tend to mention such objects even if it they are absent
in the image. Qian et al. (2024) and Liu et al. (2023a)
show that LVLMs sometimes presume the assumptions in
questions are true and easily give wrong answers when asked
about some objects not in the given image.

Causes of LVLM VQA Hallucination Hallucination can
result from bias in the training data, missing fine-grained
visual features, and LLM decoding strategies (Liu et al.,
2024). For data bias, the imbalanced distribution of data
is an important aspect. When most of the answers to a
question in the training data are “Yes”, the model tends
to answer “Yes” to that question. Missing fine-grained
visual features usually result from the pretraining of the
visual encoder. Most LVLMs use the visual encoder of
CLIP trained through contrastive learning. The encoder
mainly focuses on salient features and ignores fine-grained
features (Jain et al., 2023). LVLM decoding strategies
mostly choose the next word as the one having maximum
conditional probability given previous text and the input
image. This can lead to hallucination when the model overly
relies on the knowledge learned in its training texts. Other
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causes include model simplicity and insufficient attention
(Liu et al., 2024).

Mitigation of LVLM VQA Hallucination Strategies
to mitigate hallucination in LVLMs mainly fall into two
categories: prompt engineering and model improvement.
Prompt engineering is a well developed technique in the nat-
ural language domain that provides LLMs with instructions
and/or additional information to perform tasks. Vu et al.
(2024) and Peng et al. (2023) improve the LLM performance
by providing external information. Regarding the former,
Liu et al. (2023a) leverage visual instructions constructed
from the bounding box information in the input image to
prompt LLMs. Zheng et al. (2023) use a chain of thought
scheme to prompt the models to perform step-by-step visual-
language reasoning like humans, which eventually leads to
the correct answers. Wang et al. (2023) generate multiple
chains of thought and use the one with the majority vote
as the answer. Caffagni et al. (2024) prompt the model
with explanations of the terms in questions. Wang et al.
(2024) retrieve external knowledge to assist the model in
VQA tasks. With regard to the model improvement strategy
for reducing hallucination, Sun et al. (2023) improve the
visual and text feature alignment through reinforcement
learning. Leng et al. (2023) propose a contrastive decoding
strategy to reduce reliance on pretrained knowledge. Favero
et al. (2024) and Zhao et al. (2024) also focus on the in-
ference stage and propose specialized decoding strategies
to mitigate hallucination. Other strategies for reducing
hallucination have been proposed. For example, Zhou et al.
(2024) design a post-processing model to detect halluci-
nated objects and rephrase the generated answers, and Sun
et al. (2023) adapt a reinforcement learning strategy that
uses human evaluation of the hallucination level to improve
the model.

Assessment of LVLM Hallucination There are two ap-
proaches to assessing hallucination in LVLMs. The first is
VQA. The ground truth information of the input images
is leveraged to construct questions regarding the existence
of objects in the images (e.g., “Is there a black cat in the
image?”), as well as questions about objects which do not
exist in the images. The models are evaluated in terms of
the percentage of correctly answered questions. Metrics
of this type include POPE (Li et al., 2023c), CIEM (Hu
et al., 2023), and NOPE (Lovenia et al., 2023). The second
approach is to use pre-designed prompts from which the
models produce various generations that are then evaluated.
Examples include CHAIR (Rohrbach et al., 2018), which
counts the hallucinated objects in generated image cap-
tions, and MMHAL-BENCH (Sun et al., 2023), which uses
GPT-4 (OpenAI et al., 2023) to compare the generations
with human answers and determine the propensity toward
hallucination.

Language Model

Adapter``Briefly describe this image.’’

Visual Encoder

``In the image, a person is standing in a room with a yellow wall, holding a 
hair drier. There is a wooden cabinet with a shelf containing various items, 
and two pieces of fabric hanging on the wall.’’

Figure 1: The structure of common LVLMs.

VQA in MLVLMs For MLVLMs, given a medical scan,
models such as LLaVA-Med (Li et al., 2023a) and Med-
PALM (Liu et al., 2023c) are able to answer questions
regarding the types of modalities, the scanned organs, and
medical indicators such as opacity. They have demonstrated
good performance on medical VQA datasets such as VQA-
RAD (Lau et al., 2018), SLAKE (Liu et al., 2021), and Path-
VQA (He et al., 2020). XrayGPT (Thawakar et al., 2023)
improved model performance by performing an additional
round of training on selected high-quality data. CheXagent
(Chen et al., 2024) further developed the training process
such that the visual encoder, projection layer, and the whole
model are trained separately in three steps. However, most
medical questions in existing datasets are simple (e.g., view
classification). MLVLMs have not yet been tested on a
broader range of complex pathologies. Recently, RaDialog
(Pellegrini et al., 2023b) trains a separate image classifier
and fine-tunes the MLVLM with the classification results on
their designed datasets including various medical tasks. The
image classifier helps the model generate medical reports
with high medical correctness.

Medical Image Classification via VLMs The most no-
table vision-language model for medical image classification
is ConVIRT (Zhang et al., 2022), which employed a con-
trastive learning approach to pretrain the model for various
tasks. It inspired CLIP (Radford et al., 2021), which is able
to utilize the pretrained model for zero-shot classification
by searching for the best match between the image features
and text features of disease categories. Several CLIP vari-
ants, such as BioMedCLIP (Zhang et al., 2023b), ChexZero
(Tiu et al., 2022), MedCLIP (Wang et al., 2022), Xplainer
(Pellegrini et al., 2023a), Seibold et al. (2022), and Jang
et al. (2022), perform well on medical image classification
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Q: Pulmonary edema is the accumulation of 
fluid in the lungs. Some common X-ray 
features include: 

1. Increased density in the central lung 
fields resembling the shape of bat wings. 
2. Thin, linear opacities at the lung 
periphery, often indicating interstitial 
edema. 
3. Prominent blood vessel markings due 
to engorgement from increased.pressure 
in the pulmonary vasculature. 
Given the information above, does this 
image have edema?

A: There is no edema in this image.

Figure 2: An example of including pathology explanations
when prompting an MLVLM for medical VQA.

tasks. They can also be fine-tuned for impressive perfor-
mance on other tasks, such as segmentation and report
generation. Compared with LVLMs, they are single-purpose
models rather than generative AIs; however, these models
may be used as the backbones of encoders in MLVLMs.

3. Methodology

Figure 1 illustrates the structure of common LVLMs. They
are based on a pretrained unimodal LLM such as Llama
(Touvron et al., 2023) and Vicuna (Chiang et al., 2023). A
pretrained visual encoder, such as ViT (Dosovitskiy et al.,
2021) or conventional CNNs, is applied to extract image
features that are projected to the text feature space by an
adapter. The projected visual features are concatenated
with the text prompt embeddings and fed to the LLM. The
adapter usually consists of several linear layers with non-
linear activations. The visual encoder and the LLM are
usually frozen during training.

In our work, we choose the pretrained LLaVA-Med
(Li et al., 2023a) as our model, which is a MLVLM built
upon LLaVA (Liu et al., 2023b). The model structure
resembles Figure 1. It uses pretrained Vicuna (Chiang et al.,
2023) as the LLM and the pretrained ViT encoder from
CLIP (Radford et al., 2021) as the visual encoder. The
adapter is simply a trainable projection matrix. Both the
visual encoder and LLM weights are frozen during training.
LLaVA-Med fine-tunes LLaVA in two steps. First, it fine-
tunes LLaVA to generate medical reports from input medical
images. Second, it uses GPT-4 to generate various questions
from the ground truth reports and fine-tunes the model to
perform question answering.

Most MLVLMs are currently trained by medical VQA
such that medical diagnosis can be performed by asking
questions related to various pathologies; e.g., “Does this
image have lung lesion?”. To reduce model hallucination
and improve VQA accuracy, we propose two prompting
strategies at the inference stage: (1) providing the model

Q: Pulmonary edema is the accumulation of 
fluid in the lungs. Some common X-ray 
features include: 

1. Increased density in the central lung 
fields resembling the shape of bat wings. 
2. Thin, linear opacities at the lung 
periphery, often indicating interstitial 
edema. 
3. Prominent blood vessel markings due 
to engorgement from increased.pressure 
in the pulmonary vasculature. 

Given the information above, does this 
image have edema?

A: There is no edema in this image

Weak Learner For this image, another agent thinks the 
probability of edema is 0.1.Probability of Edema = 0.1

(Fine-tuned for high 
sensitivity and high true 

negative rate)

Figure 3: An example of prompting an MLVLM for medical
VQA using both pathology explanations and reference pre-
dictions from a weak learner.

with detailed explanations about the queried pathologies
and (2) asking the model to consider the inferences of a
weak learner.

3.1 Prompting With Detailed Explanations

Given imbalanced training data, MLVLMs might not ade-
quately be able to learn the features of the minority patholo-
gies. To compensate for insufficient training, we provide a
detailed explanation of the queried pathology as a prompt
at the inference stage. The explanation briefly defines the
pathology and lists several key findings in medical images
that may indicate its existence. An example is shown in
Figure 2. The model is informed that Pulmonary Edema
is defined as the accumulation of fluid in the lungs. Then
several chest X-ray findings that may suggest its existence
are provided. The model can determine if the given image
has Pulmonary Edema by linking the given findings with
the image features.

Prompt templates for a number of pathologies are listed
in Section A.

3.2 Prompting With Detailed Explanations and Weak
Learners

Data re-sampling is a commonly-used strategy to deal with
imbalanced datasets that are responsible for the tendency
of traditional image classification models to return negative
predictions for minority pathologies. Models trained on re-
sampled datasets often exhibit improvements in Precision
and Recall scores; however, this strategy may not be suitable
to MLVLMs for two reasons. First, it is difficult to balance a
dataset containing many categories of pathologies. Second,
MLVLMs usually demand much larger datasets and fine-
tuning is also expensive.

One can nevertheless enable MLVLMs to benefit by
leveraging small models trained on re-sampled datasets.
Our method resembles multiagent LLM systems, such as
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Pathology +Cases

Atelectasis 64
Cardiomegaly 31
Consolidation 335
Edema 1,276
Pleural Effusion 260

Table 1: Positive (+) case counts for the 5 test pathologies
in the LLaVA-Med training set.

Du et al. (2023), where multiple LLMs debate each other
and hallucination can be corrected by referring to the gener-
ated outputs of other models. Given that traditional image
classifiers are smaller, it is feasible to train multiple small
classifiers each of which is trained on re-sampled datasets
of a particular pathology. Those models can be further
fine-tuned to optimize a single aspect, such as fewer False
Positives (FPs) or fewer False Negatives (FNs). The classi-
fiers are applied to the medical images and return preliminary
predictions. These predictions are selectively included in
the prompts as references for the MLVLM. Hence, MLVLMs
can benefit indirectly from the nuanced understanding that
these specialized models can provide. This method is mean-
ingful because clinicians usually must balance the trade-off
between overtreatment and undertreatment when making
healthcare decisions. For instance, they may prefer models
having a low FP rate if the cost of overtreatment is higher
than that of undertreatment.

An example is shown in Figure 3, which queries about
the presence of Edema. We first provide the model with
the detailed explanation of Edema. Then, we use the weak
learner to suppress the FPs. The image is input to an
Edema classifier that has been fine-tuned on a balanced
dataset for high sensitivity and high true negative (TN)
rate. If its prediction is negative, we append after the
pathology explanation the prompt “For this image, another
agent thinks the probability of Edema is 0.1”. Instead of
using the actual predicted probability, the probability value
is manually chosen because the decision threshold has been
fine-tuned and is no longer 0.5. We do not use a zero
probability value because we do not want the model overly
to trust the weak learner. Although in this example our
goal is only to reduce FPs, our strategy can also be applied
to reduce FNs, simply by fine-tuning the classifier for a high
True Positive (TP) rate and applying the prompt in the
case of positive predictions.

4. Empirical Study

4.1 Datasets

LLaVA-Med is pretrained on the PMC-15M dataset (Zhang
et al., 2024), which contains image-text pairs of multiple

modalities; e.g., CT, MRI, X-ray, etc. In the first stage,
467,710 image-report pairs were selected for training. In the
second stage, 56,708 question-answer pairs were created
from the data of the first stage to fine-tune the model.
Table 1 shows the count of reports in the LLaVA-Med
training data (second stage) that mention one of the five
test pathologies as positive. Relative to the total amount
of data, all five categories are minorities.

To assess the zero-shot performance of the MLVLM, we
used the MIMIC-CXR-JPG (Goldberger et al., 2000) and
Chexpert (Irvin et al., 2019) chest X-ray test sets. They
include 5,159 and 668 images, respectively. Neither dataset
overlaps with PMC-15M.

MIMIC-CXR-JPG includes images and medical reports
covering 13 categories of findings: Atelectasis, Cardiomegaly,
Consolidation, Edema, Enlarged Cardiomediastinum, Frac-
ture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneu-
monia, Pneumothorax, Pleural Other, and Support Devices.
The raw reports are parsed and rough image-level tags are
automatically generated by a rule-based approach (Irvin
et al., 2019). Each label contains four values: 1 (positive),
0 (negative), −1 (uncertain), and missing. For simplic-
ity, we treat both uncertain and missing as negative. We
also use the MIMIC-CXR-JPG training set, which contains
227,827 chest X-rays with reports, to train the weak learner
models.

Chexpert covers the same 13 categories as MIMIC-CXR-
JPG. However, it does not include medical reports and
has only image-level labels. There is no overlap between
MIMIC-CXR-JPG and Chexpert.

Table 2 shows the split of pathology categories (exclud-
ing normal) in the MIMIC-CXR-JPG and Chexpert test sets.
Clearly, almost all pathology categories are minor classes
with much fewer positive than negative occurrences.

For our main testing regimen, we selected the five
pathologies in the Chexpert Competition (Irvin et al., 2019):
Atelectasis, Cardiomegaly, Consolidation, Edema, and Pleu-
ral Effusion.

4.2 Implementation Details

As was mentioned in Section 3, we use the pretrained
LLaVA-Med MLVLM without any further fine-tuning. We
convert the classification task into a VQA task by using
the prompt template shown in Row 1 of Table 3, which
we name Prompt Template 1 (PT1). We first run the
pretrained LLaVA-Med with PT1. Next, we incorporate
pathology explanations (Row 2 of Table 3), yielding Prompt
Template 2 (PT2). Finally, we integrate the predictions of
weak learners into the prompts (Row 3 of Table 3), resulting
in Prompt Template 3 (PT3).

As will be justified by our experiments, our weak learner
is designed to suppress FP predictions. To this end, we use
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MIMIC-CXR-JPG (5,159) Chexpert (668)
Category +Cases −Cases +Cases −Cases

Atelectasis 1,034 4,125 178 490
Cardiomegaly 1,258 3,901 175 493
Consolidation 326 4,833 35 633
Edema 959 4,200 85 583
Enlarged Cardiomediastinum 200 4,959 298 370
Fracture 167 4,992 6 662
Lung Lesion 202 4,957 14 654
Lung Opacity 1,561 3,598 310 358
Pleural Effusion 1,542 3,617 120 548
Pleural Other 119 5,040 8 660
Pneumonia 539 4,620 14 654
Pneumothorax 144 5,015 10 658
Support Devices 1,457 3,702 315 353

Table 2: Splits of positive (+) and negative (−) cases (‘uncertain’ is regarded as negative) for the 13 finding categories
in the MIMIC-CXR-JPG and Chexpert test sets.

Prompt Template

PT1 “Does this image have {target}?”

PT2 “{explanation} Given the information above, does this image have {target}?”

PT3 “{explanation} For this image, another agent thinks the probability that it has
{target} is {n} percent. Given the information above, does this image have
{target}?”

Table 3: The Prompt Templates (PTs). {target} is the pathology cited in the questions. {explanation} contains a
pathology explanation among those listed in Section A. {n} is the probability associated with the weak learner.

the pretrained ResNet50 (He et al., 2016). Given the low
cost of the weak learner, we train a model separately for
each pathology with each training dataset sampled such
that the ratio of positive and negative cases is 2 : 1. The
model was trained for 10 epochs with a 1e − 4 learning
rate. The training process was monitored using the AUC
score and the one with the highest validation AUC was kept.
Then, the decision threshold d was fine-tuned to optimize a
weighted sum of Specificity and Negative Predictive Value
(NPV); i.e.,

d = w1
TN

TN + FP + w2
TN

TN + FN , (1)

where weights w1 and w2 are preset to 0.2 and 0.8, respec-
tively. The medical images were input to the weak learners
to obtain preliminary predictions for each pathology and
only the negative predictions were selected to craft the PT3
prompts.

The responses returned by LLaVA-Med can take various
forms, such as “This image has Edema”, “Edema is found”,
“The fluid in the lung indicates Edema”, etc. An off-the-

shelf Llama-7B (Touvron et al., 2023) serves to summarize
long responses into Yes/No answers such that accuracies
could easily be computed.

4.3 Results

To demonstrate the efficacy of our prompting strategies,
starting from the PT1 baseline, the pathology explana-
tions were provided first (strategy PT2) and then, based
on the results, weak learners were introduced to improve
performance on specific aspects, resulting in strategy PT3.

PT2: Adding Pathology Explanations Table 4 reports
Precision, Recall, and F1 scores of the PT1 and PT2 strate-
gies on the MIMIC-CXR-JPG and Chexpert test sets.1 On
MIMIC-CXR-JPG, after adding pathology explanations, the
F1 scores increased for detecting Atelectasis, Cardiomegaly,

1. The AUC and ROC scores commonly reported in the literature
to assess the performances of most medical image classification
models on the MIMIC-CXR-JPG and Chexpert datasets are un-
suitable in our context because MLVLMs output text rather than
probabilities.
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MIMIC-CXR-JPG Chexpert
Pathology Metric PT1 PT2 PT1 PT2

Atelectasis
Precision 19.5 20.0 30.5 26.5
Recall 41.5 92.9 44.4 91.6
F1 26.5 33.0 36.5 41.0

Cardiomegaly
Precision 25.8 24.6 27.1 26.0
Recall 22.5 89.4 20.0 86.3
F1 24.0 38.6 23.0 40.0

Consolidation
Precision 6.8 6.3 6.0 5.2
Recall 42.3 98.5 40.0 97.1
F1 11.7 11.9 10.4 9.8

Edema
Precision 19.6 18.5 11.7 13.7
Recall 36.0 72.7 29.4 76.5
F1 25.4 29.5 16.8 23.2

Pleural
Effusion

Precision 30.4 30.0 22.3 17.9
Recall 42.8 92.7 49.2 90.0
F1 35.6 45.3 30.7 29.9

Table 4: LLaVA-Med VQA performance evaluated by Precision, Recall, and F1 (%) scores of five pathologies on the
MIMIC-CXR-JPG and Chexpert test datasets.

Pathology TP FP FN
Atelectasis 163 453 15
Cardiomegaly 151 430 24
Consolidation 28 557 7
Edema 65 410 20
Pleural Effusion 108 495 12

Table 5: True positive (TP), false positive (FP), and false
negative (FN) counts of LLaVA-Med with the PT2 strategy
on the Chexpert test set.

Edema, and Pleural Effusion, albeit only minimally for Con-
solidation. On Chexpert, after adding pathology explana-
tions, the F1 scores for detecting Atelectasis, Cardiomegaly,
and Edema increased, whereas they did not for Consolida-
tion and Pleural Effusion. The Precision and Recall scores
reveal that adding explanations generally leads to a large
increase in Recall, but only minimally influences Precision.
For minority pathologies such as Consolidation whose F1
score is dominated by low Precision, improving the Recall
would not have much effect. Thus, PT2’s performance
bottleneck is Precision.

PT3: Referring to Weak Learners Going beyond our
PT2 strategy, we applied our PT3 strategy to further im-
prove diagnostic accuracy. Table 5 provides the TP, FP,
and FN prediction counts of LLaVA-Med on the Chexpert
test set using the PT2 strategy. Note the large number of

Pathology AUC Precision Recall F1

Atelectasis 82.2 62.0 56.7 59.2
Cardiomegaly 85.0 74.4 38.3 50.6
Consolidation 81.7 100 2.9 5.6
Edema 87.3 46.5 61.2 54.2
Pleural Effusion 91.2 36.6 94.2 52.7

Table 6: Performance of the weak learner on the Chexpert
test sets for the 5 pathologies.

FP cases. Hence, we designed our weak learners to suppress
FP predictions. As mentioned in Section 4.2, we trained
the model for the highest AUC and then fine-tuned the
decision threshold. Table 6 reports the AUC, Precision,
Recall and F1 (after fine-tuning) of the weak learner. It is
important to note that we fine-tuned the decision threshold
to achieve high specificity and negative predictive value;
thus, the reported Precision, Recall, and F1 scores are based
on this fine-tuned threshold and may not be directly com-
parable to those of other models. Table 7 compares the
performance on Chexpert before and after referring to the
weak learner. It shows that the F1 prediction accuracy can
be substantially increased by introducing weak learner pre-
dictions into the prompts. The F1 scores of Cardiomegaly,
Edema, and Pleural Effusion increase by 0.115, 0.194 and
0.089, respectively. To further demonstrate the efficacy of
our PT3 strategy, Table 8 compares the FP predictions of
the PT2 and PT3 strategies. The reduction of FP cases is
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Pathology Metric PT2 PT3

Atelectasis
Precision 26.5 28.8
Recall 91.6 83.1
F1 41.0 42.8

Cardiomegaly
Precision 26.0 38.1
Recall 86.3 79.4
F1 40.0 51.5

Consolidation
Precision 5.2 7.5
Recall 97.1 34.3
F1 9.8 12.2

Edema
Precision 13.7 36.8
Recall 76.5 50.6
F1 23.2 42.6

Pleural
Effusion

Precision 17.9 25.0
Recall 90.0 85.0
F1 29.9 38.8

Table 7: Diagnostic accuracies of LLaVA-Med with the PT2
and PT3 strategies on the Chexpert test set.

noteworthy, especially on Edema, for which the FP count
is reduced by 78.5% (322).

Additional VQA Experiments Table 9 shows the results
of applying the PT1, PT2, and PT3 strategies with LLaVA-
Med on the MIMIC-CXR-JPG and Chexpert datasets across
another five medical findings: Enlarged Cardiomediastinum,
Lung Lesion, Lung Opacity, Pneumonia, and Pneumothorax.
Providing pathology explanations (PT2) generally yields
better results over the PT1 baseline, albeit inconsistently.
Introducing weak learner references (PT3) yields only lim-
ited increases in Precision, but large decreases in Recall.
Generally, it offers insignificant improvement. Enlarged
Cardiomediastinum, Lung Lesion, Pneumonia, and Pneu-
mothorax are minor categories and all our experimental
settings, including for the weak learner, fail to learn them.
Prompting is apparently unhelpful in such situations.

SOTA Benchmark Tiu et al. (2022) report F1 scores for
detecting Atelectasis, Cardiomegaly, Consolidation, Edema,
and Pleural Effusion on the Chexpert dataset using their
deep learning model, as well as for the performance of
radiologists. Their work offers a state-of-the-art chest X-ray
diagnosis benchmark. Table 10 compares the F1 scores of
radiologists, the model of Tiu et al. (2022), and LLaVA-Med.
It shows that LLaVA-Med’s VQA performance of with the
baseline PT1 strategy is unsatisfactory, rendering the model
far from being deployable in clinical practice. However,
while still underperforming radiologists, our PT3 strategy
yields a significant improvement, especially on Atelectasis,
Cardiomegaly, and Edema for which the F1 score increases

Pathology PT2 PT3

Atelectasis 453 365
Cardiomegaly 430 226
Consolidation 557 149
Edema 410 88
Pleural Effusion 495 304

Table 8: False positive counts of LLaVA-Med with the PT2
and PT3 strategies on the Chexpert test set.

by approximately 17% to 21%.

Application to General Domain LVLMs Our prompt
strategies can also be applied to general domain LVLMs.
We studied the performance of LLaVA (Liu et al., 2023b)
and MiniGPT-v2 (Zhu et al., 2023) using POPE metrics (Li
et al., 2023c). POPE evaluates the hallucination of LVLMs
by asking questions about the existing/non-existing objects
on given images. The input images are from MSCOCO
dataset and there are three questions categories: Random
(ramdom sample objects for questions), Popular (frequent
objects), and Adversarial (frequent but non-existent objects).
The performance is evaluated by the Precision, Recall and
F1 of correctly answered questions. The POPE scores
of LLaVA and MiniGPT-v2 have high Precision and low
Recall. Hence, our weak learner strategy can be used to
reduce the FN predictions. We selected an off-the-shelf
Fast-RCNN (Girshick, 2015) as the weak learner, fine-tuned
the detection threshold of bounding box scores to achieve
high Recall, and introduced the positive predictions of the
weak learner into the prompts. The results in Table 11
show that the Recall scores across three POPE categories
increased by around 7% (Precision scores decrease slightly),
thus improving the F1 scores.

5. Conclusions and Discussion

We have tested the visual question answering abilities of the
LLaVA-Med medical large vision-language model when ap-
plied to the diagnosis of pathologies. Our results show that
the model has unsatisfactory performance when asked ques-
tions regarding the presence of complex pathologies. We
proposed two prompt engineering strategies to improve the
visual question answering accuracy of the model: providing
explanations of pathologies and referring to the predictions
of weak learners. The first strategy helps the model un-
derstand minority pathologies that it does not learn well in
the training stage. The second strategy can help improve
diagnostic accuracy in specific ways; e.g., by suppressing
false positives. This strategy can also be applied to LVLMs
in other, non-medical domains.

However, our two strategies are not effective on patholo-
gies with extremely scarce data. For example, providing
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MIMIC-CXR-JPG Chexpert
Pathology Metric PT1 PT2 PT3 PT1 PT2 PT3

Enlarged Cardiomediastinum
Precision 4.3 3.9 5.0 49.3 44.1 49.4
Recall 15.0 89.0 53.5 12.4 85.2 59.1
F1 6.7 7.4 9.1 19.8 58.1 53.8

Lung Lesion
Precision 3.9 3.9 4.2 2.0 2.1 2.9
Recall 77.2 100.0 66.3 71.4 100.0 92.9
F1 7.4 7.5 8.0 3.9 4.1 5.7

Lung Opacity
Precision 31.4 30.4 31.9 50.0 47.2 51.4
Recall 67.6 88.8 84.1 70.3 90.7 84.8
F1 42.8 45.3 46.2 58.5 62.1 63.3

Pneumonia
Precision 11.4 10.5 12.3 2.4 1.7 6.3
Recall 20.0 74.6 18.0 21.4 57.1 28.6
F1 14.6 18.4 14.6 4.4 3.4 10.4

Pneumothorax
Precision 3.0 2.6 3.6 0.0 1.7 2.0
Recall 16.7 78.5 50.7 0.0 90.0 50.0
F1 5.1 5.1 6.8 0.0 3.3 3.8

Table 9: LLaVA-Med VQA performance on the MIMIC-CXR-JPG and Chexpert test sets for another 5 pathologies.

Pathology Radiologist (Tiu et al., 2022) PT1 PT3

Atelectasis 69.2 64.6 26.5 41.3
Cardiomegaly 67.8 74.3 24.0 51.5
Consolidation 38.5 33.3 11.7 12.2
Edema 58.3 60.2 25.4 42.6
Pleural Effusion 73.7 70.4 35.5 46.8

Table 10: F1 scores (%) on 5 pathologies in the Chexpert test set, including for the radiologist diagnoses, the state-of-
the-art benchmark (Tiu et al., 2022), as well as LLaVA-Med VQA with the PT1 scenario and the PT3 scenario, which is
the best result achieved by applying both our prompting strategies.

POPE Adversarial POPE Popular POPE Random
Model Precision Recall F1 Precision Recall F1 Precision Recall F1

LLaVA 91.0 78.8 84.5 95.2 78.8 86.2 97.4 78.8 87.1
with referral 88.4 85.7 87.0 92.8 85.7 89.0 97.3 85.7 91.1

MiniGPT-v2 88.2 77.2 82.3 92.7 77.2 84.2 97.2 77.2 86.1
with referral 86.8 84.2 85.5 91.9 84.2 87.9 97.3 84.2 90.3

Table 11: Comparison of POPE scores for LVLM models with and without referring to the predictions of weak learners.

text explanations for Consolidation, Fracture, Lung Lesion,
Pneumonia, and Pneumothorax may not suffice since the
visual encoder does not adequately learn meaningful visual
features. Moreover, the data may not suffice to adequately
train weak learners. A promising direction for future re-

search would be to devise a strategy for handling these rare
categories. Retrieval Augmented Generation (RAG) could
be a potential solution. For instance, in addition to textual
explanations of pathologies, typical example images can be
provided to help the model make diagnostic decisions.
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Appendix A. Pathology Explanations

The explanations of the five pathologies are as follows:

Atelectasis: Atelectasis refers to the partial or complete
collapse of a lung or a section of lung. The features of
atelectasis on an X-ray can vary depending on the cause
and extent of the collapse. Some common X-ray features
include: 1. The affected area may appear denser or whiter
than normal lung tissue due to the collapse, leading to
increased opacity on the X-ray. 2. The affected portion of
the lung may appear smaller or compressed compared to the
surrounding healthy lung tissue. 3. Atelectasis can cause
a shift or displacement of nearby structures, such as the
trachea or heart, toward the affected area. 4. In obstructive
atelectasis (caused by a blockage in the airways), there
might be signs of hyperinflation in the unaffected areas of
the lung and a visible blockage or narrowing in the affected
bronchus. 5. Linear or band-like opacities may be visible,
often referred to as plate or band atelectasis, which can
occur due to the collapse of small airways. Given the
information above, does this image have Atelectasis?

Cardiomegaly: Cardiomegaly is enlargement of the heart.
The definition is when the transverse diameter of the cardiac
silhouette is greater than or equal to 50% of the transverse
diameter of the chest (increased cardiothoracic ratio) on
a posterior-anterior projection of a chest radiograph or a
computed tomography. Given the information above, does
this image have Cardiomegaly?

Consolidation: Consolidation on an X-ray refers to the
filling of the lung’s air spaces with fluid inflammatory exu-
date, or cellular material. Typical X-ray findings suggesting
consolidation include: 1. Areas of increased density in the
lung tissue, appearing as an opaque or hazy patch on the
X-ray. Given the information above, does this image have
Consolidation?

Edema: Pulmonary edema is the accumulation of fluid
in the lungs. Some common X-ray features include: 1. In-
creased density in the central lung fields resembling the
shape of bat wings. 2. Thin, linear opacities at the lung
periphery, often indicating interstitial edema. 3. Prominent
blood vessel markings due to engorgement from increased
pressure in the pulmonary vasculature. Given the informa-
tion above, does this image have Edema?

Pleural Effusion: Pleural effusion is the accumulation of
fluid in between the parietal and visceral pleura. Some com-
mon X-ray features include: 1. blunting of the costophrenic /
cardiophrenic angle. 2. fluid within the horizontal or oblique
fissures. 3. meniscus is seen. 4. mediastinal shift occurs
away from the effusion.
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C. Pellegrini, M. Keicher, E. Özsoy, P. Jiraskova, R. Braren,
and N. Navab. Xplainer: From X-ray observations to
explainable zero-shot diagnosis. In Medical Image Com-
puting and Computer Assisted Intervention — MICCAI
2023, pages 420–429, Cham, 2023a. Springer Nature
Switzerland.

69

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt


Guo and Terzopoulos, 2025
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